Chemical and electrical interaction mechanisms during the plasma electrolytic (PEO) mixed oxide formation on magnesium

镁上等离子电解(PEO)混合氧化物形成过程中的化学和电相互作用机制

基本信息

项目摘要

Magnesium is the lightest metallic engineering material and therefore offers an enormous potential to save weight in mobile systems. Beyond that, magnesium is easy to recycle. Excellent casting process properties and a good damping capacity towards electromagnetic and mechanical oscillations predestine magnesium materials for the construction of machine casings as well as framework and encasements for sensible sensory, optical and entertainment electronic devices. Despite the positive processing and application properties listed here, the application spectrum of magnesium alloys is currently limited due to their low resistance towards corrosive and tribological stress. Plasma electrolytic oxidation is a promising and environmentally friendly surface treatment process to encounter these technical challenges. An already successfully finished DFG-project was concerned with the substrate/electrolyte interaction before and during the discharge initiation, as well as the aimed insertion of electrolyte components into the generated PEOcoating. It was shown that by employing highly concentrated electrolytes, very hard and chemically resistant mixed oxide (chemical compositions dominated by electrolyte components rather than substrate components) coatings are producible, which hardness exceed that of MgO layers significantly. However, due to their morphology being afflicted with local defects, such coatings will negatively affect the resulting corrosion- and wear resistance. This reveals further research needs. A characterisation of the complex coat-forming processes as well as the interactions of chemical and electrical process parameters during the plasma electrolyte coating procedure is only possible by empirical means, according to the state of the art and in lack of a consistent process model. Therefore, the proposed project is aiming towards the research of action mechanisms of interacting chemical and electrical processes during the plasma electrolytic oxidation of magnesium under formation of mixed oxides. To reach this goal, the process needs to be characterised and understood in detail. For that, the charge throughput of the pulses necessary for coating formation are to be broken down into electro- and plasma-chemical parts, and specific process stages like the coat-healing Softsparking and cathodic discharges need to be systematically recorded. On this basis, hybrid pulse patterns adjusted to the individual process stages will be developed. The data foundation generated during the project will subsequently be used to create a model concept which describes the underlying mechanisms. Based on the obtained conclusions and using environmentally friendly electrolytes, adherent and low-defect mixed oxide coatings are to be generated on magnesium substrates and to be qualified for corrosively and tribologically demanding applications.
镁是最轻的金属工程材料,因此具有减轻移动系统重量的巨大潜力。除此之外,镁很容易回收。优异的铸造工艺性能以及对电磁和机械振荡的良好阻尼能力注定了镁材料可用于制造机器外壳以及敏感感官、光学和娱乐电子设备的框架和外壳。尽管这里列出了积极的加工和应用特性,但镁合金的应用范围目前受到限制,因为它们对腐蚀和摩擦应力的抵抗力较低。等离子体电解氧化是应对这些技术挑战的一种有前途且环保的表面处理工艺。一个已经成功完成的 DFG 项目涉及放电启动之前和期间的基材/电解质相互作用,以及将电解质成分插入到生成的 PEO 涂层中。结果表明,通过采用高浓度电解质,可以生产非常坚硬且耐化学腐蚀的混合氧化物(化学成分主要是电解质成分而不是基材成分)涂层,其硬度显着超过MgO层。然而,由于其形态受到局部缺陷的影响,此类涂层将对最终的耐腐蚀性和耐磨性产生负面影响。这揭示了进一步的研究需求。根据现有技术并且缺乏一致的工艺模型,只能通过经验手段来表征复杂涂层形成过程以及等离子体电解质涂覆过程中化学和电工艺参数的相互作用。因此,该项目旨在研究在混合氧化物形成下镁的等离子体电解氧化过程中相互作用的化学和电过程的作用机制。为了实现这一目标,需要详细描述和理解该过程。为此,涂层形成所需的脉冲的电荷吞吐量将被分解为电化学和等离子体化学部分,并且需要系统地记录涂层修复软火花和阴极放电等特定工艺阶段。在此基础上,将开发适应各个工艺阶段的混合脉冲模式。项目期间生成的数据基础随后将用于创建描述底层机制的模型概念。基于所获得的结论并使用环保电解液,将在镁基材上生成粘附性低缺陷的混合氧化物涂层,并满足腐蚀性和摩擦学要求的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Thomas Lampke其他文献

Professor Dr.-Ing. Thomas Lampke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Thomas Lampke', 18)}}的其他基金

Generation and Preconditioning of Aluminium Matrix Composite Friction Surfaces of Braking Discs
制动盘铝基复合摩擦面的生成与预处理
  • 批准号:
    414236319
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Fatigue behaviour of aluminium alloys after anodic and plasma-electrolytic oxidation
阳极和等离子体电解氧化后铝合金的疲劳行为
  • 批准号:
    435265960
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coating materials made of high-entropy alloys for tribologically highly stressed surfaces
用于高摩擦应力表面的高熵合金涂层材料
  • 批准号:
    415816419
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Thermomechanical Treatment of High-alloyed Martensitic Stainless Steels for Complex Parts
复杂零件用高合金马氏体不锈钢的形变热处理
  • 批准号:
    334485458
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mechanisms of the plasma electrolytic oxidation of light-metal-based material compounds
轻金属基材料化合物的等离子体电解氧化机理
  • 批准号:
    339953808
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Functional surface design by complementarily matched thermal spray and cutting processes
通过互补匹配的热喷涂和切割工艺进行功能表面设计
  • 批准号:
    270118517
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Graded plasma-anodised oxide coatings for wear and corrosion protection on titanium aluminides
用于对铝化钛进行磨损和腐蚀防护的分级等离子阳极氧化涂层
  • 批准号:
    253127141
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Plasma-electrolytic oxidation of thermally sprayed aluminium coatings for high-temperature wear applications under particle-loaded hot-gas jets
热喷涂铝涂层的等​​离子电解氧化,用于颗粒负载热气射流下的高温磨损应用
  • 批准号:
    265717247
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Prediction of the residual strength of corroded high-strength aluminum alloys under uniaxial loading by numerical simulations
单轴载荷下腐蚀高强铝合金残余强度的数值模拟预测
  • 批准号:
    259373824
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Layer formation mechanisms during plasma-anodising of magnesium in dependence of the electrolyte composition
镁等离子阳极氧化过程中的层形成机制与电解质成分的关系
  • 批准号:
    258050305
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

战略与管理研究类:电气科学与工程学科研究方向与关键词优化
  • 批准号:
    52342702
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
桂东北加里东期李家锡矿精细成矿过程:来自锡石和电气石微区元素和同位素的制约
  • 批准号:
    42302109
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
学术交流类:2023 IEEE第六届国际电气与能源大会
  • 批准号:
    52342701
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
导电复合氧化物电气化脱硝的低温反应及抗硫机理
  • 批准号:
    22376078
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中空波导腔气体拉曼信号增强方法及其对电气设备典型故障特征气体的检测特性
  • 批准号:
    52307159
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Delineating the synapse coordination pathway
描绘突触协调通路
  • 批准号:
    10790827
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Proteomic analysis of the electrical synapse
电突触的蛋白质组学分析
  • 批准号:
    10042722
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
The role of molecular interactions in electrical breakdown of polymeric insulation
分子相互作用在聚合物绝缘体电击穿中的作用
  • 批准号:
    18K13751
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of mechanical, electrical and chemical factor interaction mechanism in all solid state battery and its application
全固态电池中机械、电学和化学因素相互作用机制的阐明及其应用
  • 批准号:
    16H04229
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Plasticity of Electrical Synapses
电突触的可塑性
  • 批准号:
    8488425
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了