metis II - Artificial intelligence methods for auto-completion of designs based on semantic building information (BIM) for supporting architects in early design phases.
metis II - 基于语义建筑信息 (BIM) 自动完成设计的人工智能方法,用于在早期设计阶段为建筑师提供支持。
基本信息
- 批准号:419390235
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the "metis II" project is to develop methods for auto-completion of building designs. Using artificial intelligence approaches, (partial) information is extracted from reference designs and proposed to the architect as additions to his own design. Thus, methods are developed to apply useful information from a semantic building model (BIM) in the design context. Methods are examined to suggest e.g. kitchens, corridors or bathrooms and e.g. their location to a given formalized spatial configuration of e.g. a living room and a bedroom. The methods to be developed must be able to recognize both the context of the building design and the user-specific context. For this purpose, methods of artificial intelligence (AI), especially case-based reasoning (CBR) and artificial neural networks (KNN), are applied, expanded and developed. The explainability of the system to be developed (XAI - Explainable AI) is a further focus of the project, since the automatically generated solution parts as well as the learned knowledge must be explained to the user - in addition to the usual search results.For the integration of (partial) information from digital semantic building information models (BIM) as semantic and topological design specifications (spatial arrangement), the steps of the CBR cycle are fully integrated into the design process and new methods for the domain-specific adaptation of CBR knowledge containers (case basis, similarity measure, vocabulary and adaptation knowledge) are developed. The current state of (CBR)-research results in acquisition and administrative deficits: A special challenge of CBR, especially of retrieve and retain steps, is the size and quality of the case base, since the largest and most high-quality database possible is required. However, the data must be acquired, processed and at the same time the quality of the cases must be ensured. In order to increase the quality of the database, deep-learning methods for targeted "forgetting" are examined in the project "metis II".The project "metis II" is based on the results of metis I ("metis - Knowledge-based search and query methods for the development of semantic information models (BIM) for use in early design phases" funded by the DFG from 2013-2017. In "metis I", approaches for drawing a retrieval for semantic building models (BIM) were investigated and methods were developed to process the information. The concept of semantic building fingerprints used for this has proven to be robust enough and the methodological approaches have been confirmed.
“ METIS II”项目的目的是开发建筑设计自动完成的方法。使用人工智能方法,(部分)信息是从参考设计中提取的,并向建筑师提出了自己的设计。因此,开发了在设计环境中应用语义构建模型(BIM)的有用信息的方法。检查方法以提出例如厨房,走廊或浴室,例如它们位于给定的形式化的空间配置,例如客厅和卧室。要开发的方法必须能够识别建筑物设计的上下文和特定于用户的上下文。为此,应用,扩展和开发了人工智能方法(AI),尤其是基于病例的推理(CBR)和人工神经网络(KNN)。要开发的系统(XAI-可解释的AI)的解释性是该项目的进一步重点,因为除了通常的搜索结果外,还必须向用户解释自动生成的解决方案零件以及学习的知识。将(部分)信息集成(部分)信息(BIM)信息(BIM)的(BIM),该方法(BIM)为“语义和拓扑”(BIM)进行了整合,该方法是在语义和拓扑设计的过程中,该方法是c的(spatial nead),该方法是C.开发了CBR知识容器(案例基础,相似性度量,词汇和适应知识)的特定领域适应。 (CBR)研究的当前状态会导致收购和管理缺陷:CBR的特殊挑战,尤其是检索和保留步骤,是案例基础的大小和质量,因为可能需要最大,最高质量的数据库。但是,必须获取,处理数据,同时必须确保案例的质量。为了提高数据库的质量,在项目“ Metis II”中检查了针对目标“忘记”的深度学习方法。项目“ METIS II”基于METIS I(“基于METIS-基于知识的搜索和基于知识的搜索和查询方法)用于开发语义信息模型(BIM)在早期设计阶段中使用dfg for dfg for dfg for dfg for dfg for 201 i i。研究了语义构建模型(BIM),并开发了处理信息的概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Andreas Dengel其他文献
Professor Dr. Andreas Dengel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Andreas Dengel', 18)}}的其他基金
"Scalable Methods of Text and Structure Recognition for the Full-Text Digitization of Historical Prints" Part 2: Layout Analysis
“历史印刷品全文数字化的文本和结构识别的可扩展方法”第 2 部分:布局分析
- 批准号:
394346204 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
"Scalable Methods of Text and Structure Recognition for the Full-Text Digitization of Historical Prints" Part 1.B: Image Optimization
“用于历史印刷品全文数字化的文本和结构识别的可扩展方法”第 1.B 部分:图像优化
- 批准号:
394343055 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
Sustaining Grass-roots Organizational Memories: Methods and Effects of Applying Managed Forgetting in Administrative Corporate Scenarios
维持基层组织记忆:在企业行政场景中应用管理遗忘的方法和效果
- 批准号:
318396700 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Linked Open Citation Database (LOC-DB) - Development of a Linked Open Data database for the indexing of citations of electronic and print media
链接开放引文数据库 (LOC-DB) - 开发链接开放数据数据库,用于电子和印刷媒体引文索引
- 批准号:
311018540 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
metis - Knowledge-based search and query methods for accessing information of semantic models (BIM) to support searching in early design stages.
metis - 基于知识的搜索和查询方法,用于访问语义模型(BIM)信息以支持早期设计阶段的搜索。
- 批准号:
235841221 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Neuronale Netze zur Beschreibung von Nachbarnetzen
用于描述邻近网络的神经网络
- 批准号:
5110362 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
KIF17介导肿瘤细胞MHC-II胞膜定位促进乳腺癌抗原提呈及免疫应答的机制研究
- 批准号:82372781
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
基于Wnt通路探讨装载淫羊藿次苷II外泌体靶向骨髓间充质干细胞成骨分化抗骨质疏松治疗的机制研究
- 批准号:82374164
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
MnOx还原与Mn(II)氧化匹配循环机制及强化减碳脱氮调控策略
- 批准号:52370094
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
II-VI族胶体半导体量子点二步合成法与低温成核机理研究
- 批准号:22305162
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
近红外II区荧光/光声探针的制备及其在植物病害的早期检测与防治中的应用
- 批准号:52373209
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: A Manufacturing Monitoring System Using Sound Spectrograms and Artificial Intelligence
SBIR 第二阶段:使用声谱图和人工智能的制造监控系统
- 批准号:
2335395 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SBIR Phase II: Arctic Environmental Modeling with Augmentation and Curation from an Artificial Intelligence Engine
SBIR 第二阶段:通过人工智能引擎进行增强和管理的北极环境建模
- 批准号:
2213136 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SBIR Phase II: A Platform for Health Care Data Integration Using Blockchain and Artificial Intelligence
SBIR 第二阶段:使用区块链和人工智能的医疗保健数据集成平台
- 批准号:
2304102 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SBIR Phase II: Artificial intelligence powered optical spectrometer technology for farm-level milk testing
SBIR 第二阶段:用于农场级牛奶检测的人工智能驱动的光学光谱仪技术
- 批准号:
2233881 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement