Adaptive and parallel algorithms for solving partialdifferential equations with variable coefficients on sparse grids
求解稀疏网格上变系数偏微分方程的自适应并行算法
基本信息
- 批准号:418669609
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sparse grids are an innovative technique for reducing the computational amount for the numerical solution of partial differential equations. Applications are differential equations on complex domains with reentrant edges and corners or high dimensional problems like the time independent Schrödinger equation. In both cases, accurate numerical solutions are difficult to obtain. In order to apply sparse grids to such differential equations it is important to apply a Ritz-Galerkin discretization. However, such a discretization leads to several algorithmic difficulties in case of variable coefficients. These difficulties do not appear for a new discretization method on sparse grids, which was recently developed. This discretization applies prewavelets and a discretization with semi-orthogonality. By this concept, PDE’s with variable coefficients can efficiently be solved by suitable algorithms. The aim of the project is to continue the development of algorithms for solving PDE’s on sparse grids. In particular algorithms on adaptive sparse grids for variable coefficients and efficient algorithms for the calculation of the stiffness matrix have to be developed. Furthermore, new parallelization concepts are needed, since conventional parallelization concepts cannot be applied to sparse grids. The new algorithms will be implemented and analyzed for suitable applications.
稀疏网格是一种减少偏微分方程数值求解计算量的创新技术,适用于具有重入边角的复杂域上的微分方程或高维问题(例如与时间无关的薛定谔方程)。为了将稀疏网格应用于此类微分方程,应用 Ritz-Galerkin 离散化非常重要。然而,这种离散化在变量的情况下会导致一些算法困难。对于最近开发的稀疏网格上的新离散化方法来说,这些困难不会出现。这种离散化应用预小波和半正交离散化,可以通过适当的算法有效地解决具有可变系数的偏微分方程。该项目的重点是继续开发稀疏网格上求解偏微分方程的算法,特别是用于可变系数的自适应稀疏网格的算法和用于计算的高效算法。此外,由于传统的并行化概念不能应用于稀疏网格,因此需要新的并行化概念来实现和分析合适的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christoph Pflaum其他文献
Professor Dr. Christoph Pflaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christoph Pflaum', 18)}}的其他基金
Precise simulation of solid-state amplifiers
固态放大器的精确仿真
- 批准号:
283234036 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Expression templates for partial differential equations
偏微分方程的表达式模板
- 批准号:
5402255 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Overcoming the Multiple Scattering Limit in Optical Coherence Tomography
克服光学相干断层扫描中的多重散射限制
- 批准号:
10446063 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Overcoming the Multiple Scattering Limit in Optical Coherence Tomography
克服光学相干断层扫描中的多重散射限制
- 批准号:
10634673 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Efficient Two-Photon Voltage Imaging of Neuronal Populations at Behavioral Timescales
行为时间尺度神经元群的高效双光子电压成像
- 批准号:
10516906 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Real-time Aberration Sensor for Large-Scale Microscopy Deep in the Mouse and Adult Zebrafish Brain
用于小鼠和成年斑马鱼大脑深处的大规模显微镜检查的实时像差传感器
- 批准号:
10166305 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Bi-directional neural interface for probing parallel visual pathways
用于探测平行视觉通路的双向神经接口
- 批准号:
10470807 - 财政年份:2021
- 资助金额:
-- - 项目类别: