Improving the imaging capabilities of modern portable loop-loop electromagnetic induction (EMI) systems using ground-penetrating radar (GPR) data

使用探地雷达 (GPR) 数据提高现代便携式环路电磁感应 (EMI) 系统的成像能力

基本信息

项目摘要

In near-surface geophysical applications, portable loop-loop electromagnetic induction (EMI) sensors are increasingly used to rapidly image the electrical conductivity of the uppermost meters of the subsurface across rather large areas (several hectares). The resulting 3D models of electrical conductivity can serve to characterize a large selection of targets because many rocks, soil layers and anthropogenic materials show contrast of electrical conductivity. However, because electrical conductivity of subsurface materials is influenced by many different soil and rock properties, the interpretation of the EMI electrical conductivity models is often complex and non-unique; especially, in contexts where no reliable background information about the imaged subsurface is available. Moreover, even if the nature of the targets is known, EMI data are limited in terms of their structural resolution capabilities because each measurement is sensitive to an integrated volume of subsurface.The ground-penetrating radar (GPR) method is another popular near-surface imaging method. As a wave-based imaging technique, which is sensitive to dielectric permittivity contrasts, GPR is typically considered as the geophysical method providing the highest structural resolution. However, a more quantitative analysis in terms of physical property models is often limited with typical 2D/3D GPR reflection data. Although both EMI and GPR methods are used to explore similar depth ranges, they have never been combined in the framework of a quantitative integrated imaging/inversion procedure. Considering weaknesses and strengths of each method and that they can provide complementary information, we hypothesize that a quantitative integration results in an improved characterization of subsurface structures and properties. In this project, we propose to develop and evaluate approaches for quantitively combining EMI and GPR data in order to reduce the classical ambiguities and resolution limitations encountered when using the EMI method only. In doing so, we will first study the typical non-uniqueness of the EMI methods by comparing three different EMI data inversion strategies on several types of controlled targets. Then, we will focus on incorporating the structures as derived from GPR data into the inversion of EMI data, and study how such a strategy helps to reduce the non-uniqueness of the inverted EMI models. In this respect, we will develop and evaluate two constrained inversion strategies: one deterministic grid-based approach, which was recently reported in the literature for larger scale problems, and one stochastic parametric approach. Thus, we expect from this project general conclusion regarding the possibilities of combining EMI and GPR data as well as methodological innovations regarding EMI data inversion further improving the imaging capabilities and the applicability of the EMI method.
在近地形地球物理应用中,越来越多地使用便携式环环电磁诱导(EMI)传感器来快速对地下上最上面的电导率进行跨相当大的面积(几公顷)的电导率。所得的3D电导率模型可以用来表征大量目标,因为许多岩石,土壤层和人为材料都显示出电导率的对比。但是,由于地下材料的电导率受许多不同的土壤和岩石特性的影响,因此对EMI电导率模型的解释通常是复杂且不唯一的。特别是,在没有可靠的背景信息的上下文中。此外,即使已知目标的性质,EMI数据也受到结构分辨率功能的限制,因为每个测量都对集成体积的地下敏感。地面渗透雷达(GPR)方法是另一种流行的近乎表面成像方法。作为一种基于波浪的成像技术,对介电介电常数的对比敏感,GPR通常被视为地球物理方法提供了最高的结构分辨率。但是,在物理特性模型方面进行更定量的分析通常受到典型的2D/3D GPR反射数据的限制。尽管EMI和GPR方法都用于探索相似的深度范围,但它们从未在定量集成成像/反转过程的框架中合并。考虑到每种方法的弱点和优势,并且它们可以提供互补信息,我们假设定量整合会改善地下结构和特性的表征。在该项目中,我们建议开发和评估定量组合EMI和GPR数据的方法,以减少仅使用EMI方法时遇到的经典歧义和解决方案限制。在此过程中,我们将通过比较几种类型的受控靶标的三种不同的EMI数据反转策略来研究EMI方法的典型非唯一性。然后,我们将专注于将来自GPR数据的结构纳入EMI数据的反转,并研究这种策略如何有助于降低倒置EMI模型的非唯一性。在这方面,我们将制定和评估两种约束的反转策略:一种基于确定性网格的方法,最近在文献中报道了大规模问题的文献,以及一种随机参数方法。因此,我们从这个项目的一般结论中,关于将EMI和GPR数据组合的可能性以及有关EMI数据反演的方法学创新进一步提高了成像功能和EMI方法的适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Julien Guillemoteau, Ph.D.其他文献

Dr. Julien Guillemoteau, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于介观脑功能成像的帕金森病触觉感知智能诊断模型研究
  • 批准号:
    62306035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于磁共振成像探究多发性硬化症运动功能损伤及修复的白质信号通路机制
  • 批准号:
    82302167
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于磁纳米粒子成像的灵长类脑认知功能研究
  • 批准号:
    32371152
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于功能磁共振成像的rTMS改善精神分裂症阴性症状疗效预测与作用机制研究
  • 批准号:
    62301304
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的非对称纤维成像及功能传导束图谱构建算法研究
  • 批准号:
    62303413
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Small Animal In Vivo Imaging Facility with microCT imaging capabilities
具有 microCT 成像功能的小动物体内成像设备
  • 批准号:
    LE240100032
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Super-resolution microscope with fluorescence fluctuation and expansion gel imaging capabilities
具有荧光波动和膨胀凝胶成像功能的超分辨率显微镜
  • 批准号:
    524798474
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
  • 批准号:
    10596786
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Console Upgrade for 4.7T PET-MRI Preclinical Scanner
4.7T PET-MRI 临床前扫描仪控制台升级
  • 批准号:
    10630520
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigating the Recruitment of Different Neuronal Subpopulations by Intracortical Micro Stimulation Using Two Photon-Microscopy
使用两个光子显微镜研究皮质内微刺激对不同神经元亚群的招募
  • 批准号:
    10604754
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了