Development of a generally applicable machine learning potential with accurate long-range electrostatic interactions

开发具有精确的远程静电相互作用的普遍适用的机器学习潜力

基本信息

  • 批准号:
    411538199
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2019
  • 资助国家:
    德国
  • 起止时间:
    2018-12-31 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

In recent years, a new generation of interatomic potentials based on machine learning techniques has been introduced. These potentials, which provide a direct functional relation between the atomic positions and the potential-energy, combine the accuracy of electronic structure methods with the efficiency of simple empirical potentials. Because of the absence of system-specific terms they allow to perform extended simulations of a large variety of systems. Most of these potentials rely on atomic properties like energies and charges depending only on the local chemical environments of the atoms. Such local charges are, however, unable to capture long-range charge transfer. This prevents the accurate description of systems in which distant structural features have global effects on the charge distribution in the system. Examples for such systems are semiconductors including defects, polar surfaces of oxides and metal-organic molecules with different possible metal oxidation states. In order to overcome these intrinsic limitations of current machine learning potentials, we propose to combine high-dimensional neural networks with the charge equilibration neural network technique. The resulting new method will be generally applicable to all types of systems, which we will demonstrate by analyzing the potential-energy surfaces of different model systems covering all types of bonding using the minima hopping method.
近年来,基于机器学习技术的新一代原子间势被引入。这些势提供了原子位置和势能之间的直接函数关系,将电子结构方法的准确性与简单经验势的效率结合起来。由于缺乏系统特定术语,它们允许对多种系统进行扩展模拟。大多数这些势依赖于原子特性,例如能量和电荷,仅取决于原子的局部化学环境。 然而,这种本地电荷无法捕获远程电荷转移。这阻碍了对远距离结构特征对系统中电荷分布具有全局影响的系统的准确描述。此类系统的示例是包含缺陷的半导体、氧化物的极性表面以及具有不同可能的金属氧化态的金属有机分子。为了克服当前机器学习潜力的这些固有局限性,我们建议将高维神经网络与电荷平衡神经网络技术相结合。由此产生的新方法将普遍适用于所有类型的系统,我们将通过使用最小跳跃方法分析涵盖所有类型键合的不同模型系统的势能表面来证明这一点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jörg Behler其他文献

Professor Dr. Jörg Behler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jörg Behler', 18)}}的其他基金

Development of a Neural Network Potential for Metal-Organic Frameworks
金属有机框架神经网络潜力的开发
  • 批准号:
    405479457
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular Dynamics Simulations of Complex Systems Using High-Dimensional Neural Networks
使用高维神经网络对复杂系统进行分子动力学模拟
  • 批准号:
    329898176
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships
Theoretical Investigation of the Structural Properties of Copper Clusters at Zinc Oxide
氧化锌中铜簇结构性质的理论研究
  • 批准号:
    289217282
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular Dynamics Simulations of Complex Systems Using High-Dimensional Neural Network Potentials
使用高维神经网络势的复杂系统的分子动力学模拟
  • 批准号:
    251138345
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Molecular Dynamics Studies of the Water-Copper Interface Using Neural Network Potentials
使用神经网络势的水-铜界面的分子动力学研究
  • 批准号:
    225657524
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Enantioselective Processes at Surfaces Studied by High-Dimensional Neural Network Potentials
高维神经网络势研究表面的对映选择性过程
  • 批准号:
    76899711
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Ab initio Metadynamik-Untersuchung von Phasendiagrammen kristalliner Festkörper unter extremen Bedingungen
极端条件下结晶固体相图的从头元动力学研究
  • 批准号:
    25882953
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Fourth-Generation Neural Network Potentials for Molecular Chemistry
第四代神经网络在分子化学方面的潜力
  • 批准号:
    495842446
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Development of a generally applicable catalytic direct amidation reaction
通用催化直接酰胺化反应的开发
  • 批准号:
    EP/T030488/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of a generally applicable catalytic amidation reaction
通用催化酰胺化反应的开发
  • 批准号:
    EP/T030658/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of a generally applicable catalytic direct amidation reaction
通用催化直接酰胺化反应的开发
  • 批准号:
    EP/T030666/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of a generally applicable catalytic direct amidation reaction
通用催化直接酰胺化反应的开发
  • 批准号:
    EP/T030534/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
How are herbivorous consumers limited by multiple resources simultaneously? - Development and definition of co-limitation types in a generally applicable theoretical framework
草食性消费者如何同时受到多种资源的限制?
  • 批准号:
    228727763
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了