Bio-inspired Smart Attachment and Adaptive Neuromechanical Control for Highly Efficient Locomotion and Adaptation to an Autonomous Climbing Robot

仿生智能附件和自适应神经机械控制可实现自主攀爬机器人的高效运动和适应

基本信息

项目摘要

Climbing robots are able to move on smooth or rough ground, walls or ceilings, and have wide application prospects in public and national security areas, narrow space detection, and cityscape services. Legged climbing robots, having a strong adaptability to the environment, can cross the complex terrain surface and have good movement flexibility. At present, their control and movement generation mainly rely on engineering approaches where online learning and adaptation have not been fully integrated. This limits the overall performance of the robot to deal with a changing environment. In contrast, geckos, insects, and spiders can efficiently walk and climb on different substrate slope and roughness. They can be stably attached and crawl on unsteady vertical (such as walls) or inverted (such as ceilings) surfaces in the natural environment, relying primarily on mechanical claw interlocking and foot pad adhesion as well as on the synergistic effect of both. Furthermore, they can even quickly adapt their locomotion to a change of their environment or an unknown situation. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the key ingredients include biomechanics (e.g., adhesive pads and claws), sensory feedback, and adaptive neural control. Taking these ingredients into account for robot development together with in-depth studying and understanding attachment mechanisms of climbing animals in steady and unsteady states will lead to an adaptive, versatile, and efficient bio-inspired climbing robot. According to this, the purpose of the project is to 1) study and analyze the adhesive mechanisms of climbing animals based on the synergic action of claw mechanical interlocking and pad adhesion, and the multiple-peeling strategy of climbing animals for smart attachment control, 2) perform biological experiments, investigate locomotion behavior and its reaction forces of sprawled posture animals by using the former developed animal full-space motion behavior and reaction force testing system, and establish dynamic model of quadruped, 3) develop adaptive neuromechanical control with sensory feedback and online adaptation for stable and efficient climbing strategies, and 4) develop a bionic foot with adhesive pads and active claws. The developed bionic foot and adaptive neuromechanical control will be implemented on our autonomous climbing robot to achieve highly efficient locomotion and adaptation on changing incline angles and walls with smooth and different roughness substrates.
攀爬机器人能够在光滑或粗糙的地面、墙壁或天花板上移动,在公共和国家安全领域、狭窄空间检测、城市景观服务等方面具有广泛的应用前景。足式攀爬机器人对环境的适应能力很强,可以穿越复杂的地形表面,具有良好的运动灵活性。目前,它们的控制和运动生成主要依靠工程方法,在线学习和适应尚未完全集成。这限制了机器人应对不断变化的环境的整体性能。 相比之下,壁虎、昆虫和蜘蛛可以在不同坡度和粗糙度的基质上有效地行走和攀爬。它们可以在自然环境中不稳定的垂直(如墙壁)或倒置(如天花板)表面上稳定地附着和爬行,主要依靠机械爪互锁和脚垫粘附以及两者的协同作用。此外,他们甚至可以快速调整自己的运动以适应环境的变化或未知的情况。多才多艺和适应能力是其感觉运动回路中嵌入的多种成分整合的结果。生物学研究表明,关键成分包括生物力学(例如粘合垫和爪子)、感觉反馈和自适应神经控制。在机器人开发中考虑到这些因素,再加上深入研究和理解攀爬动物在稳定和不稳定状态下的附着机制,将产生一种适应性强、多功能且高效的仿生攀爬机器人。 据此,该项目的目的是1)研究和分析基于爪机械互锁和垫粘附协同作用的攀爬动物的粘附机制,以及用于智能附着控制的攀爬动物的多次剥离策略,2 )利用前期开发的动物全空间运动行为和反作用力测试系统进行生物学实验,研究趴姿动物的运动行为及其反作用力,建立四足动物的动力学模型,3)开发具有感觉的自适应神经机械控制反馈和在线适应,以实现稳定、高效的攀爬策略,4) 开发带有粘性垫和主动爪的仿生足。所开发的仿生足和自适应神经机械控制将在我们的自主攀爬机器人上实现,以实现高效的运动和适应不断变化的倾斜角度以及具有光滑和不同粗糙度基底的墙壁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stanislav N. Gorb其他文献

Professor Dr. Stanislav N. Gorb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stanislav N. Gorb', 18)}}的其他基金

Biologically inspired frictional and adhesive artificial surfaces derived from hierarchically ordered patterns of carbon nanotubes
源自生物启发的摩擦和粘合人造表面,源自碳纳米管的分层有序图案
  • 批准号:
    156714834
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hierarchical anti-adhesive materials by mimicking insect traps
模仿昆虫陷阱的分层防粘材料
  • 批准号:
    128306512
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Ecomorphology and comparative kinematics of legs in larval and adult dragonflies (Odonata)
幼虫和成年蜻蜓(蜻蜓目)腿部的生态形态学和比较运动学
  • 批准号:
    5356397
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Bioinspired composite materials from aligned cellulose nanofiber arrays with tailored surface functionalities
由具有定制表面功能的对齐纤维素纳米纤维阵列制成的仿生复合材料
  • 批准号:
    447247094
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Arthropod parasites of marine mammals: convergent physical solutions of living on aquatic hosts
海洋哺乳动物的节肢动物寄生虫:生活在水生宿主上的聚合物理解决方案
  • 批准号:
    492008301
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Timing of chitin/chitosan matrix assembly in insects
昆虫中甲壳素/壳聚糖基质组装的时间
  • 批准号:
    525893614
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Photomechanical Soft Grippers
照相机械软夹具
  • 批准号:
    405032442
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
  • 批准号:
    DGECR-2021-00087
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
  • 批准号:
    RGPIN-2021-02645
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
  • 批准号:
    RGPIN-2021-02645
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
  • 批准号:
    DGECR-2021-00087
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Smart, Bio-Inspired, Nano-Engineered Fiber Reinforced Cementitious Composites for Sustainable Infrastructure Rehabilitation and Maintenance
用于可持续基础设施修复和维护的智能仿生纳米工程纤维增强水泥基复合材料
  • 批准号:
    146990-2013
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了