対称空間の観点からの Damek-Ricci 空間の一般化とその幾何構造の研究

对称空间视角下Damek-Ricci空间的推广及其几何结构研究

基本信息

  • 批准号:
    22K13919
  • 负责人:
  • 金额:
    $ 2.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

本研究課題は対称空間論の観点から Damek-Ricci 空間の一般化,およびその幾何構造の研究を行うものである.2022 年度は非コンパクト型対称空間内の部分多様体の幾何構造の研究を行った:(1) 非コンパクト実 2-平面 Grassmann 多様体内の然るべき等質超曲面がよい接触構造を持つことを示した.本研究課題の目的の1つは非コンパクト型対称空間内の部分多様体の幾何構造の研究である.我々の先行研究により,非コンパクト実 2-平面 Grassmann 多様体内のある等質超曲面が (κ,μ)-空間と呼ばれる特殊な接触計量多様体であることが示されていたが,今回はその超曲面を変形して得られる然るべき等質超曲面(族)も同様に (κ,μ)-空間であることを示した.なおその事実自体は先行研究によって知られていたが,我々は Lie 環論の観点からの別証明を与えた.非コンパクト実 2-平面 Grassmann 多様体は階数 2 非コンパクト型 (Hermite) 対称空間のモデルとなるものであり,その部分多様体の幾何構造や Lie 環構造が得られたことは,本研究課題において重要であると考える.(2) AI型の非コンパクト型対称空間内の然るべき部分多様体について,その断面曲率について調べた.本研究課題の目的の1つは Damek-Ricci 空間の一般化であるが,その際に一般化した空間が Einstein 性や Hadamard 性(非正曲率性)を持つことを期待している.そのため,Einstein かつ非正曲率な Riemann 多様体の例を調べることは重要である.先行研究により非コンパクト型対称空間内には Einstein 性を持つ部分多様体の例が多く存在することが知られている.そこで,トイモデルとして AI 型対称空間内でそのような部分多様体の断面曲率や幾何構造について調べた.
该研究主题是从对称空间理论的角度来概括damek-ricci空间并研究其几何结构。在2022年,我们研究了非紧凑型对称空间中亚曼叶的几何结构:(1)非紧密的实际2平面格拉曼(Grassmann)歧管表明,歧管内合适的均质超弯曲表面具有良好的接触结构。该研究主题的目的之一是研究非紧密对称空间中亚曼叶的几何结构。我们先前的研究表明,在非compact实际2平面格拉曼(Grassmann)歧管中的同质性超表面是一种特殊的接触式度量歧管,称为(κ,μ)空间,但是在本文中,我们表明,通过将hypersurface获得的适当同质性超表面(family)与相似的(κ,κ,κ,μ)-US-μ)-US-Space-μ-space。尽管这一事实本身是通过先前的研究知道的,但我们从谎言环理论的角度给出了不同的证据。非紧密的真实2平面格拉曼(Grassmann)歧管是2阶非压缩对称空间的模型,在本研究主题中,Submanifolds的几何结构和谎言环结构被认为很重要。 (2)我们研究了AI-Type非压缩对称空间中适当的亚策略的横截面曲率。该研究主题的目的之一是对damek-ricci空间的概括,我们希望广义空间将具有爱因斯坦和哈达玛德属性(非外皮)。因此,重要的是要检查爱因斯坦和非狂热的Riemann歧管的例子。先前的研究已发现许多在非紧密对称空间中具有爱因斯坦特性的亚曼叶的例子。因此,我们研究了AI-Type对称空间中此类亚策略的横截面曲率和几何结构作为玩具模型。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Lie theoretic interpretation of realizations of some contact metric manifolds
一些接触度量流形的实现的李理论解释
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

久保 亮其他文献

興亜院与戦時日本的中国調査(中国語)
Koain的日本战时中国调查(中文)
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田中比呂志;飯塚靖;小浜正子;川尻文彦;久保亨;井上 久士;久保 亨;小浜 正子;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;中村 元哉;中村 元哉;久保 亮;田中 比呂志;佐藤 仁史;川尻 文彦;川尻 文彦;高田 幸男;高田 幸男;久保 亮;久保 亮
  • 通讯作者:
    久保 亮
世界政治のなかの清末中国
晚清中国在世界政治中的地位
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田中比呂志;飯塚靖;小浜正子;川尻文彦;久保亨;井上 久士;久保 亨;小浜 正子;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;中村 元哉;中村 元哉;久保 亮;田中 比呂志;佐藤 仁史;川尻 文彦
  • 通讯作者:
    川尻 文彦
江南科研の概略・成果・課題
甲南科学研究的概要、成果与挑战
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田中比呂志;飯塚靖;小浜正子;川尻文彦;久保亨;井上 久士;久保 亨;小浜 正子;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;中村 元哉;中村 元哉;久保 亮;田中 比呂志;佐藤 仁史;川尻 文彦;川尻 文彦;高田 幸男;高田 幸男;久保 亮;久保 亮;久保 亮;小浜 正子;佐藤 仁史;金子 肇;金子 肇;川尻 文彦;金子肇;高田幸男
  • 通讯作者:
    高田幸男
江蘇省教育会の「復活」、1947年-戦後中国教育界に関する初歩的考察-
1947年江苏省教育会的“复活”——战后中国教育界入门研究——
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田中比呂志;飯塚靖;小浜正子;川尻文彦;久保亨;井上 久士;久保 亨;小浜 正子;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;中村 元哉;中村 元哉;久保 亮;田中 比呂志;佐藤 仁史;川尻 文彦;川尻 文彦;高田 幸男
  • 通讯作者:
    高田 幸男
近代中国における国家、都市税制と同業団体-体系的把握に向けた序説-
近代中国的国税、市税制度和行业协会 - 系统认识入门 -
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田中比呂志;飯塚靖;小浜正子;川尻文彦;久保亨;井上 久士;久保 亨;小浜 正子;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;川尻 文彦;中村 元哉;中村 元哉;久保 亮;田中 比呂志;佐藤 仁史;川尻 文彦;川尻 文彦;高田 幸男;高田 幸男;久保 亮;久保 亮;久保 亮;小浜 正子;佐藤 仁史;金子 肇;金子 肇;川尻 文彦;金子肇
  • 通讯作者:
    金子肇

久保 亮的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('久保 亮', 18)}}的其他基金

リーマン及び擬リーマン対称空間への群作用の幾何とリー群上の左不変計量
黎曼和伪黎曼对称空间上群作用的几何以及李群上的左不变度量
  • 批准号:
    14J06060
  • 财政年份:
    2014
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

Differential geometric study of four dimensional diffeomorphism Poincare conjecture and variant Yamabe invariants
四维微分同胚Poincare猜想和变体Yamabe不变量的微分几何研究
  • 批准号:
    18540067
  • 财政年份:
    2006
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了