異質な集団が混在するデータに対する分位点回帰モデル
异质群体数据的分位数回归模型
基本信息
- 批准号:22K13375
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
パネルデータに対して、回帰係数が個体ごとに異なりうる状況での分位点回帰問題について、同一個体からの観測値の相関構造を考慮したうえでパラメータを推定する手法を考えるべく、個体は有限個のグループに分割され、同じグループに属する個体は同じ回帰係数を共有するといったモデルを考えた。よって、グループ数の推定・各個体が属するグループの同定・各グループにおける回帰係数の推定を同時に行うためのアルゴリズムを考案することが目標となる。そのためにはパラメータを推定するための目的関数が必要となるが、同一個体からの観測値の相関構造を考慮した手法として提案された2次推定関数を用いることとした。しかし、本研究の設定に対しては単純に2次推定関数を用いることはできない。なぜなら、2次推定関数は統計モデルのモーメント条件から構成されたものであるが、本研究ではモーメント条件がグループの数だけあり、またどの個体がどのグループに属しているか不明であるため、モーメント条件にもとづいた推定方程式を作ることができないからである。そこで、2次推定関数の考えを基本としつつ、回帰係数が全体の回帰係数の平均と外れる部分を変量効果とみなすことで、疑似尤度により固定効果である全体の回帰係数の平均と変量効果とみなした各個体に特有の係数をもとめるための損失関数を構成した。また、同じグループに属する個体の係数が同じになるように、上述の損失関数にLasso型の罰則項をいれたものを目的関数とした。また、上述の目的関数を最適化することで得られるパラメータの推定量の統計的性質を考えた。今年度では、説明変数を固定した場合に回帰係数の推定量の一致性と同じグループに属する個体の係数が同じになるといったグループの同定ができることについては示すことができ、原稿にもまとめている段階である。
对于分位数回归问题,在一个人之间的回归系数可能有所不同的情况下,我们提出了一个模型,其中个人被分为有限群,而属于同一组的个体共享相同的回归系数,以考虑一种方法来考虑从同一个人中考虑观察值的相关值后估计参数的方法。因此,目标是设计一种算法,用于同时估计组数量,识别每个人所属的组,并估算每个组的回归系数。为此,需要一个用于估算参数的目标函数,但是建议的二次估计函数用作一种方法,该方法考虑了同一个体观察到的值的相关结构。但是,本研究中的设置不可能简单地使用二次估计功能。这是因为二次估计函数由统计模型中的力矩条件组成,但是在这项研究中,力矩条件与存在一样多,并且尚不清楚哪个个体属于哪个组,因此不可能根据力矩条件创建一个估计方程。因此,虽然基于二次估计函数的概念,但我们考虑了回归系数与整体回归系数的平均值不同的部分,并构建了损耗函数以获得每个个体所特有的系数,这些系数是固定效应,这些系数是每个个体所独有的系数,这些系数被认为是随机效应。此外,目标函数被用来在上述损失函数中包括一个套索式惩罚项,以使属于同一组的个体的系数相同。此外,考虑了通过优化上述目标函数获得的参数估计值的统计特性。今年,我们可以证明,当固定解释变量时,可以识别组,以使回归系数的估计器的匹配和属于同一组的个体的相同系数,现在在手稿中编译。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
伊藤 翼其他文献
Singular solutions of the p-Dirichlet problem on a cone domain
锥域上 p-Dirichlet 问题的奇异解
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Egawa;R.;Hososhima;S.;Hou;X.;Katow;H;S.;Ishizuka;T. Nakamura;H.;and Yawo;H.;吉武由彩;江川遼;吉武由彩;江川遼;吉武由彩;江川遼;江川遼;江川遼;江川 遼;江川 遼;江川 遼;江川 遼;江川 遼;江川 遼;Yuko Mori;T. Itoh;森悠子;T. Itoh;Yuko Mori;伊藤 翼;Yuko Mori;伊藤 翼;森 悠子;伊藤 翼;伊藤 翼;森 悠子;伊藤 翼 - 通讯作者:
伊藤 翼
Martin boundary for p-harmonic functions in a cylinder and a cone
圆柱体和圆锥体中 p 调和函数的 Martin 边界
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Egawa;R.;Hososhima;S.;Hou;X.;Katow;H;S.;Ishizuka;T. Nakamura;H.;and Yawo;H.;吉武由彩;江川遼;吉武由彩;江川遼;吉武由彩;江川遼;江川遼;江川遼;江川 遼;江川 遼;江川 遼;江川 遼;江川 遼;江川 遼;Yuko Mori;T. Itoh;森悠子;T. Itoh;Yuko Mori;伊藤 翼;Yuko Mori;伊藤 翼;森 悠子;伊藤 翼 - 通讯作者:
伊藤 翼
食品タンパク質の水分活性と水和のミクロ構造
食品蛋白质的水活度和水化微观结构
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
榮 まな;伊藤 翼;大倉拓海;増澤(尾﨑) 依;細野 崇;関 泰一郎;中川洋 - 通讯作者:
中川洋
Positive p-harmonic functions with zero boundary data on cone domains
锥域上具有零边界数据的正 p 调和函数
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yutato Mori. Shiori Ozasa;Momoko kitaoka;Shuhei Noda;Tsutomu Tanaka;Hirofumi Ichinose;Noriho Kamiya;伊藤 翼 - 通讯作者:
伊藤 翼
A clinical study of super-elderly patients over 90 years old with oral cancer
90岁以上高龄口腔癌患者的临床研究
- DOI:
10.11277/stomatology.68.12 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
坂上 泰士;神田 拓;小泉 浩一;谷 亮治;林堂 安貴;笹原 妃佐子;伊藤 翼;佐渡 友浩;石田 康隆;岡本 康正;小林 雅史;吉岡 幸男;坂本 哲彦;明見 能成;虎谷 茂昭;岡本 哲治;松井 健作;津島 康司;大林 史誠;濱田 充子;山崎 佐知子;浜名 智昭;角 健作 - 通讯作者:
角 健作
伊藤 翼的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('伊藤 翼', 18)}}的其他基金
ジアゾフリー銀カルベン発生法に立脚した新展開と薬理活性分子群の合成
基于无重氮卡宾银生成方法及药理活性分子合成的新进展
- 批准号:
22KJ0470 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
嗅覚低下を予防する継続性を持ったデザイン手法の提案
提出防止嗅觉丧失的可持续设计方法
- 批准号:
23K11730 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
無血清培養系を用いた口腔扁平上皮癌におけるSP細胞の分子生物学的特性の解析
无血清培养系统分析口腔鳞癌SP细胞分子生物学特性
- 批准号:
15K20532 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
白金メタラサイクル錯体を用いたクラスター錯体合成
使用铂金属环配合物合成簇配合物
- 批准号:
14044011 - 财政年份:2002
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
混合原子価状態の電子的カップリング定数の新しい評価法の開発
混合价态电子耦合常数评估新方法的发展
- 批准号:
14654118 - 财政年份:2002
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Exploratory Research
ルテニウム三核錯体二量体が示す三核クラスター骨格間原子価揺動
钌三核配合物二聚体表现出的三核簇骨架之间的价态波动
- 批准号:
11694051 - 财政年份:1999
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
クラスターユニット間混合原子価状態が示す高速分子内電子移動と赤外吸収線形
簇单元之间的混合价态表明快速分子内电子转移和红外吸收线性
- 批准号:
09874128 - 财政年份:1997
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Exploratory Research
電気化学的ポテンシャル勾配をもつルテニウム三核錯体のピラジン架橋オリゴマー
电化学势梯度吡嗪桥钌三核配合物低聚物
- 批准号:
09229212 - 财政年份:1997
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
相似海外基金
情報源符号の平均符号長と復号遅延に関する階層的クラスタリングの解明
关于信息源代码的平均代码长度和解码延迟的层次聚类的阐明
- 批准号:
24K14818 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
高次元小標本におけるクラスタリング手法とカーネル法の有効性に関する理論と応用
高维小样本中聚类方法和核方法有效性的理论与应用
- 批准号:
24K20748 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
銀河クラスタリングと重力レンズ効果を用いた標準宇宙論モデルの検証
使用星系团聚和引力透镜验证标准宇宙学模型
- 批准号:
24KJ0211 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
尺度混在・次元縮約クラスタリングによる主要情報の抽出と効率的計算環境の開発
使用混合尺度/降维聚类提取关键信息并开发高效计算环境
- 批准号:
24K14869 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
不確実性を考慮したクラスタリングに基づく柔軟な推薦システムに関する発展的研究
考虑不确定性的基于聚类的柔性推荐系统发展研究
- 批准号:
24K15110 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)