Geometric measure theory and hyperbolic operators ant its numerical calculations

几何测度论与双曲算子及其数值计算

基本信息

  • 批准号:
    24654020
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
  • 财政年份:
    2012
  • 资助国家:
    日本
  • 起止时间:
    2012-04-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

In this research work, hyperbolic free boundary problems have been treated. The basic equation expresses a model for peeling off a tape from a plane. Based on this model, we established a new method analyzing bubble motion on water surface or small droplet motion with dynamic contact angle on obstacle. In the case of everal attached bubbles, we developed an efficient algorithm which can automatically deal with moving junctions including topological changes. On the ther hand, we have constructed a numerical solver for the problem of bouncing elastic shell via the discrete Morse flow method. Using this algorithm, we are able to incorporate inner structure and analyze the interactionbetween the shell and its contents.
在这项研究工作中,双曲自由边界问题得到了解决。基本方程表达了从平面上剥离胶带的模型。基于该模型,我们建立了一种分析水面上气泡运动或障碍物上动态接触角小水滴运动的新方法。对于总是附着气泡的情况,我们开发了一种有效的算法,可以自动处理移动结点,包括拓扑变化。另一方面,我们通过离散莫尔斯流方法构建了弹性壳弹跳问题的数值求解器。使用该算法,我们能够合并内部结构并分析外壳与其内容之间的相互作用。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
小原功任粒子法による液的の数値計算
Koto Ohara粒子法液体数值计算
A Construction Method of Solutions ofParabolic Systems with Local Hoelder Continuity
具有局部Holder连续性的抛物线系统解的构造方法
A global model for impact of elastic shells and its numerical implementation
弹性壳冲击的全局模型及其数值实现
Mathematical and computational aspects of problems involving adhesion, detachment, and collision
涉及粘附、分离和碰撞的问题的数学和计算方面
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    三石史人;山口孝男;Norio Iwase;河内明夫;Seiro Omata;T. Yamaguchi;S.Omata;Norio Iwase;河内明夫;山口孝男;河内明夫;S.Omata
  • 通讯作者:
    S.Omata
Mathematical modeling and numerical treatment of adhesion, exfoliation and collision
粘附、剥落和碰撞的数学建模和数值处理
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    風間正喜;諏訪多聞;小俣正朗;A. Mitsuishi and T. Yamaguchi;Norio Iwase;Akio Kawauchi;A. Mitsuishi and T. Yamaguchi;S.Omata
  • 通讯作者:
    S.Omata
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OMATA Seiro其他文献

OMATA Seiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OMATA Seiro', 18)}}的其他基金

Variational approach to collision, detachment and adhesion
碰撞、分离和粘附的变分方法
  • 批准号:
    23340024
  • 财政年份:
    2011
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New topics for partial differential equations whose solution has singular sets
解具有奇异集的偏微分方程的新主题
  • 批准号:
    18340047
  • 财政年份:
    2006
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical analysis for nonlinear partial differential equations with singular solutions
具有奇异解的非线性偏微分方程的数学分析
  • 批准号:
    15340041
  • 财政年份:
    2003
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of partial differential equations related to a variational problem via the discrete Morse Semiflows
通过离散莫尔斯半流对与变分问题相关的偏微分方程进行数学分析
  • 批准号:
    11640159
  • 财政年份:
    1999
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of free boundary problems related to a variational problem
与变分问题相关的自由边界问题的数学分析
  • 批准号:
    09640170
  • 财政年份:
    1997
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Kinetics on surface tension with junction
连接处表面张力的动力学
  • 批准号:
    21K03349
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on verified numerical computations for nonlinear hyperbolic partial differential equations
非线性双曲偏微分方程数值计算验证研究
  • 批准号:
    18K13453
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometry of partial differential equations and inverse problems
偏微分方程的几何和反问题
  • 批准号:
    18H01126
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematization of calculation methods of three dimensional open channel flows based on the bottom velocity computation method and new developments of non-equilibrium sediment dynamics
基于底速计算方法的三维明渠水流计算方法体系化及非平衡沉积动力学新进展
  • 批准号:
    18H01546
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on representation for solutions to PDE by elliptic functions and the related problems
椭圆函数偏微分方程解的表示及相关问题的研究
  • 批准号:
    18K03374
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了