Beyond-planarity: A generalization of the planarity concept in graph drawing
超越平面性:图形绘制中平面性概念的概括
基本信息
- 批准号:364468267
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research field of graphs beyond planarity has been developed in recent years tremendously; evidence are several workshops and Dagstuhl seminars with this particular topic, as well as a survey book that will be published soon. In the first proposal in 2017, we gave a wide collection of research tasks in various directions. Meanwhile, we contributed in several directions; we summarized this in the progress report. However, we have also identified several new interesting research challenges and directions that we want to follow.1. Classification: We want robust definitions that are also parametrizable (fan-planar -> k-fan-planar, k-gap-planar -> (k,l)-gap-planar). We also want clear hierarchies between different graph classes. We expect to find new classes that complete the hierarchic structure. The classification will also be accompanied by combinatorial and algorithmic analyses on structural properties and parameters (e.g., low degree, girth etc) of the considered classes. 2. Layout: During the first project phase, we observed that the work on layout algorithms for graphs beyond planarity is very limited. The main reason for this is that the known techniques cannot be adopted so easily. Therefore, during the second project phase we will put our main focus on this aspect. For example for the standard approach to compute an appropriate topological embedding, and then a corresponding geometric embedding, both steps are challenging for the case of graphs beyond planarity and provide a considerable portion of risk in the project. To find algorithms which are practically applicable, we plan to provide fast exponential-time algorithms, maybe refined by parametrization, or efficient heuristics that can produce close-to-optimal layouts. It is definitely a far-from-trivial task to find corresponding requirements for more complex classes. Only elementary results are currently known mostly limited to the class of 1-planar graphs.3. Dissemination: By organizing meetings with other groups, we will develop the field further keeping the topic of beyond planarity as a central topic in regular workshops such as GNV in Heiligkreuztal, BWGD in Bertinoro and Dagstuhl. At such workshops, we find new insights by combining forces with people from combinatorial graph theory and computational geometry but also from algorithmic graph theory (e.g., Pach, T\'oth, Hoffmann, Speckmann). In 2016 and 2019, the applicant co-organized two Dagstuhl seminars on beyond planarity. A new edition of this successful Dagstuhl seminar is currently under consideration. As a side note, we further mention that in 2021 our group will be organizing the 29th Symposium of Graph Drawing and Network Visualization in Tübingen, a great honor and appreciation of our work in the field.
近年来,超出平面图的研究领域与这个特定的主题以及一本将在2017年的第一个提案中发表的调查书。各种说明。 。 ,我们观察到超出平面图的算法是有限的为了计算适当的拓扑嵌入,超出平面的图形的几何嵌入项目中的相当多的风险是找到实用的算法,这些算法是快速指示的算法,可能是通过参数化或效率启发的算法 - 目前,要查找复杂类的相应申报表。和Dagstuhl。我们。在2021年,我们的小组将在图宾根组织第29次图形图和网络可视化,这是对我们在该领域工作的巨大荣誉和欣赏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Kaufmann, Ph.D.其他文献
Professor Dr. Michael Kaufmann, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Kaufmann, Ph.D.', 18)}}的其他基金
New Models and Methods for the Effective Orthogonal Layout of Graphs
图的有效正交布局的新模型和方法
- 批准号:
249458560 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
The project develops new techniques for the interactive navigtion, visualization, and analysis of heterogeneous biological networks
该项目开发用于异构生物网络的交互式导航、可视化和分析的新技术
- 批准号:
81651418 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
Structure-based Algorithm Engineering for SAT-Solving
用于 SAT 求解的基于结构的算法工程
- 批准号:
47775802 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Evolutionstheorien für natürliche und technische Netzwerke
自然和技术网络的进化理论
- 批准号:
5422241 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
基于多脉冲激发的快速高保真多对比度平面回波成像技术研究
- 批准号:62301309
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空气动力学地表粗糙度长度与零平面位移高度的联合反演及其在遥感蒸散发估算中的应用
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
基于混合编码平面光栅的绝对式六自由度纳米/亚角秒测量机理与系统
- 批准号:62275142
- 批准年份:2022
- 资助金额:59 万元
- 项目类别:面上项目
非垂轴观测平面上自由曲面零光展度光束调控研究
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:
动磁式多自由度精密磁悬浮永磁同步平面电机系统研究
- 批准号:52077042
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
無限平面上の離散構造列挙と類似度設計による結晶の表面構造探索
通过无限平面上离散结构的枚举和相似设计来搜索晶体的表面结构
- 批准号:
23K28151 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
マルチ移動体の高精度制御のための平面ビジュアルエンコーダ
平面视觉编码器,用于多个运动物体的高精度控制
- 批准号:
23K11275 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
可動子界磁巻線を有する平面アクチュエータの6自由度電流制御技術
带动子励磁绕组的平面执行器的六自由度电流控制技术
- 批准号:
23K03736 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Planarity Testing of Graphs
图的平面度测试
- 批准号:
572174-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
次世代型内湾波浪予測のための水深積分型不規則波浪計算に対する風応力モデルの開発
开发用于下一代内湾波浪预测的深度积分不规则波浪计算的风应力模型
- 批准号:
22K04342 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)