The Period Map of a Two-Dimensional Semi-Simple Frobenius Manifold

二维半简弗罗贝尼乌斯流形的周期图

基本信息

项目摘要

Recall that in 2020, we computed the image of the Milnor lattice of an ADE singularity under a period map. Otani-Takahashi generalized the result to the case of invertible polynomials of chain type but in a different method. Using the basis of Milnor lattice of chain type invertible polynomials that was found by Otani-Takahashi, we calculated the image of the Milnor lattice of chain type invertible polynomials from the other side of the mirror following our original method.As an application, an important topological invariant of the basis called Seifert form, which is related to a more well-known topological invariant called intersection form, was calculated following a significant formula by Hertling connecting Seifert form and somewhat analytical result here.As I mentioned our goal is to compute the image of the Milnor lattice via the period map. The main feature of our answer is that it involves various gamma-constants and roots of unity. The second goal of our paper was to show that although the formulas look cumbersome, in fact there is an interesting structure behind them. We expected that our answer can be stated quite elegantly via relative K-theory as what we did for ADE singularity. However, as for the general chain type invertible polynomials, equivariant relative topological K-theory interpretation is far more difficult.
回想一下,在2020年,我们计算了在时期图下Ade奇异性的Milnor晶格的图像。 Otani-takahasi将结果概括为链类型的可逆多项式的情况,但采用了不同的方法。使用Otani-Takahashi发现的链型可逆多项式的米尔诺晶格的基础,我们计算了从镜像的另一侧链型可逆多项式的米尔诺晶格的形象通过将Seifert形式连接的Hertling连接,并在此处进行分析结果。我提到的是通过时期图计算Milnor晶格的图像。我们答案的主要特征是它涉及各种伽玛组成和团结的根源。我们论文的第二个目标是表明,尽管公式看起来很麻烦,但实际上它们背后有一个有趣的结构。我们希望我们的答案可以通过相对K理论优雅地说明,就像我们为Ade Singularity所做的那样。但是,对于一般链类型可逆多项式,等效的相对拓扑K理论的解释要困难得多。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integral Structure for Simple Singularities
共 1 条
  • 1
前往

相似国自然基金

甲基苯丙胺戒断者不同时期脉象脉图变化特点、发生机制及其与抑郁相关性的重复测量设计研究
  • 批准号:
    81703983
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
康雍乾时期三大实测全图的数字化及比较研究(1662-1795年 )
  • 批准号:
    41771152
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
中国地质历史时期生命全景图
  • 批准号:
    41120004
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Period map for primitive forms and their associated root systems and Lie algebras
本原形式的周期图及其相关的根系和李代数
  • 批准号:
    23H01068
    23H01068
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Identifying Patterns of BMI Development and Associated Behavioral, Social, Environmental, Genetic, and Biological Factors for Children from 3-10 Years
确定 3-10 岁儿童的 BMI 发展模式以及相关行为、社会、环境、遗传和生物因素
  • 批准号:
    10713863
    10713863
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
Examining associations between social network characteristics, obesity-related health behaviors, and weight retention among racially/ethnically diverse postpartum women
检查不同种族/民族产后女性的社交网络特征、肥胖相关健康行为和体重保持之间的关联
  • 批准号:
    10464179
    10464179
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
Examining associations between social network characteristics, obesity-related health behaviors, and weight retention among racially/ethnically diverse postpartum women
检查不同种族/民族产后女性的社交网络特征、肥胖相关健康行为和体重保持之间的关联
  • 批准号:
    10627864
    10627864
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别:
Development of new therapeutic approaches for endometrial cancer
子宫内膜癌新治疗方法的开发
  • 批准号:
    10522572
    10522572
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
    $ 1.6万
  • 项目类别: