Lie 群構造をもつ非線形発展方程式の可解性の解明

具有李群结构的非线性演化方程的可解性阐明

基本信息

  • 批准号:
    21K03333
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

本研究課題はstratified Lie 群(以下SLG)の性質が偏微分方程式の解の性質に対し、どのように関係しているのかを解明することを目的にしている。研究期間初年度に得られた結果は、SLGに付随する非線形熱方程式の初期値問題に対するソボレフの尺度劣臨界の空間における解の一意存在性に関する結果であり、ユークリッド空間におけるRiabudの結果をSLGへ拡張するものであった。その結果を考察すると、SLGの特性の1つである伸縮変換(dilation)に関する非等方性の情報は等質次元の中に組み込まれ、ソボレフの尺度臨界指数として現れていた。そのため、尺度臨界におけるユークリッド空間上の結果もSLG上へ一般化可能ではないかと予想された。そこで本研究期間の2年目はSLGに付随する非線形熱方程式の初期値問題に対して、ソボレフの尺度臨界な空間における解の一意存在性の解明を試みた。その結果として、尺度臨界指数が正かつ2以下の場合に、尺度臨界空間における十分小さな初期値に対し、時間大域的可解性を得ることが出来た。空間の条件である正かつ2以下の場合の尺度臨界空間における尺度臨界な空間においては、ソボレフの埋め込み定理を用いてルベーグ空間における尺度臨界な空間で議論が可能になる。そのため、劣臨界(研究初年度)における非線形項の評価の際に生じた、SLGが内在する非可換性に起因した難しさは現れず、ユークリッド空間のときと同様にSLGでも大域解の一意存在を示すことができた。この結果はユークリッド空間におけるRiboudの結果のSLGへの一般化になっている。この結果をまとめた論文を査読付き雑誌に投稿済みである。
该研究主题旨在阐明分层谎言组(SLG)的性质与偏微分方程的解决方案的性质有关。在研究期间第一年获得的结果是有关索波列夫亚临界量表在与SLG相关的非线性热热方程的初始值问题的溶液独特存在的结果,从而扩展了欧几里得空间中Riabud的结果​​到SLG中。考虑到结果,将有关拉伸转化的各向异性信息(SLG的特性之一)纳入了均匀的维度,并以Sobolev的规模临界指数出现。因此,据预测,欧几里得空间的规模临界值也可以推广到SLG上。因此,在此研究期的第二年,我们试图阐明Sobolev在与SLG相关的非线性热方程的初始值问题的关键空间中的独特存在。结果,当量表临界指数为正且小于2时,可以在比例尺临界空间中获得足够小的初始值的时间全球求解性。在规模关键空间中,在正面和小于2的情况下,这是空间的条件,可以使用Sobolev的嵌入定理在Lebesgue空间中的规模关键空间中进行讨论。因此,与在欧几里得空间中一样,在SLG中也可能实现了在亚临界术语评估期间发生的SLG的非可承诺性以及全球解决方案的独特存在以及全球解决方案的独特存在所带来的困难。该结果是对欧几里得空间中Riboud的结果​​的概括。总结这些结果的论文已经提交给同行评审的杂志。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

岡 康之其他文献

岡 康之的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quasi self-similar transformation for a semilinear heat equation and its application to the solvability
半线性热方程的拟自相似变换及其在可解性中的应用
  • 批准号:
    23K03179
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of formation and extinction of singularities in nonlinear parabolic equations
非线性抛物方程中奇点的形成和消失分析
  • 批准号:
    23K12998
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
燃焼と流体の大域ダイナミクス解析
燃烧和流体的全局动力学分析
  • 批准号:
    21K13821
  • 财政年份:
    2021
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Solvability for a nonlinear heat equation with singular initial data
具有奇异初始数据的非线性热方程的可解性
  • 批准号:
    19K14569
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Systematical geometric analysis and asymptotic analysis for evolution equations
演化方程的系统几何分析和渐近分析
  • 批准号:
    19H05599
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了