New Developments in Regression Discontinuity Designs: Covariates Adjustment and Coverage Optimal Inference
不连续性回归设计的新进展:协变量调整和覆盖最优推理
基本信息
- 批准号:21K01419
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project proposes a novel approach to incorporate covariates in regression discontinuity (RD) designs. It represents the covariate balance condition as over-identifying moment restrictions. The empirical likelihood (EL) RD estimator efficiently incorporates the information from covariate balance and has an asymptotic variance no larger than that of the standard estimator without covariates. This project then proposes a robust corrected EL confidence set which achieves a faster coverage error decay rate. The coverage accuracy of the proposed confidence interval is automatically robust against slight perturbation to the covariate balance condition, which may happen in cases such as data contamination and misspecified “unaffected” outcomes used as covariates. This project also propose a way to conduct sensitivity analysis in the bandwidth choice when the researcher wants to use regression discontinuity with covariate adjustment. This project conducts Monte Carlo simulations to assess the finite-sample performance of the proposed inference method and then applies it to a real dataset.
该项目提出了一种将协变量纳入回归不连续性 (RD) 设计的新方法,它将协变量平衡条件表示为过度识别矩限制。经验似然 (EL) RD 估计器有效地合并了协变量平衡的信息,并具有渐近方差。不大于没有协变量的标准估计量,然后该项目提出了一个稳健的校正 EL 置信度集,该置信度集实现了更快的覆盖误差衰减率。所提出的置信区间的覆盖精度自动稳健。对协变量平衡条件的扰动,这可能发生在数据污染和用作协变量的错误指定的“未受影响”结果等情况下。当研究人员想要使用协变量的回归不连续性时,该项目还提出了一种在带宽选择中进行敏感性分析的方法。该项目进行蒙特卡洛模拟来评估所提出的推理方法的有限样本性能,然后将其应用于实际数据集。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation and inference on treatment effects under treatment-based sampling designs
基于治疗的抽样设计对治疗效果的估计和推断
- DOI:10.1093/ectj/utac008
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Song Kyungchul;Yu Zhengfei
- 通讯作者:Yu Zhengfei
Empirical Likelihood Covariate Adjustment for Regression Discontinuity Designs
- DOI:
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Jun Ma;Zhengfei Yu
- 通讯作者:Jun Ma;Zhengfei Yu
SIMPLE SEMIPARAMETRIC ESTIMATION OF ORDERED RESPONSE MODELS
有序响应模型的简单半参数估计
- DOI:10.1017/s0266466622000317
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Liu Ruixuan;Yu Zhengfei
- 通讯作者:Yu Zhengfei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YU ZHENGFEI其他文献
YU ZHENGFEI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YU ZHENGFEI', 18)}}的其他基金
A sample selection model with a monotone selection correction function
具有单调选择校正功能的样本选择模型
- 批准号:
19K13666 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
相似海外基金
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Extended empirical likelihood
扩展的经验可能性
- 批准号:
RGPIN-2016-03804 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of the empirical likelihood and finite mixture model
经验似然和有限混合模型的理论与应用
- 批准号:
RGPIN-2019-04204 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual