Robust Methods for the Physically-Based Animation of Large Deformations in Computer Graphics

计算机图形学中基于物理的大变形动画的鲁棒方法

基本信息

项目摘要

The goal of this research project is the development of robust and efficient methods for the physically-based animation of large deformations in computer graphics applications. This project has been funded by the German Research Foundation (DFG) for 18 months. In this time period our research group first investigated the stability problems in finite element simulations caused by degenerate and inverted elements. We were able to solve these problems using a method based on an analytic polar decomposition. Further, in the first project phase we developed a novel, very efficient simulation method based on a corotated elasticity model, which is more than a hundred times faster than previous methods using the same model. This enabled us to perform animations with multiple hundred thousand elements in real-time. In computer graphics time integration is mostly performed using the implicit Euler method due to its good stability. However, this method suffers from numerical damping which leads to a loss of important details and realism. Therefore, our group developed a stable implicit time integration method of higher order, which provides more accurate results and which reduces the numerical damping significantly. In the continuation of this project we plan to investigate the application of new material models to robustly simulate large deformations. More precisely, we want to investigate micropolar models, which were already successfully used in computer graphics to simulate elastic rods and fluids. These models define additional rotational degrees of freedom which enable a better representation of the bending and torsion of a deformable body. The improved representation has the advantage that less elements are required in elastic rods simulations. Moreover, it was shown that the numerical damping could be significantly reduced in simulations of turbulent fluids using a micropolar model. In the next phase of this research project we plan to use micropolar material models for the animation of two- and three-dimensional deformable bodies. To the best of our knowledge this has not been done before in computer graphics. In this way we want to benefit from the advantages of micropolar models, especially when simulating large deformations with rotations. First, we plan to develop a simulation method for volumetric bodies. Then we want to extend this method to simulate two-dimensional shells. To perform the time integration, the method, which we developed in the first phase, should be extended to solve the additional equations required for the micropolar models. Further, we plan to investigate the animation of plastic deformations considering the rotational degrees of freedom. Finally, we want to use the additional degrees of freedom to realize a detailed visualization with high-resolution surface meshes.
该研究项目的目标是开发稳健且有效的方法,用于计算机图形应用中基于物理的大变形动画。该项目得到了德国研究基金会(DFG)为期18个月的资助。在此期间,我们课题组首先研究了由简并单元和倒置单元引起的有限元模拟中的稳定性问题。我们能够使用基于解析极分解的方法来解决这些问题。此外,在项目的第一个阶段,我们开发了一种基于共旋转弹性模型的新颖、非常高效的模拟方法,该方法比以前使用相同模型的方法快一百倍以上。这使我们能够实时执行具有数十万个元素的动画。在计算机图形学中,时间积分主要使用隐式欧拉方法进行,因为它具有良好的稳定性。然而,这种方法会受到数值阻尼的影响,从而导致重要细节和真实性的损失。因此,我们课题组开发了一种稳定的高阶隐式时间积分方法,可以提供更准确的结果,并显着降低数值阻尼。在该项目的延续中,我们计划研究新材料模型的应用以稳健地模拟大变形。更准确地说,我们想要研究微极模型,该模型已经成功地用于计算机图形学中来模拟弹性杆和流体。这些模型定义了额外的旋转自由度,可以更好地表示可变形体的弯曲和扭转。改进的表示法的优点是弹性杆模拟中需要更少的单元。此外,研究表明,使用微极模型模拟湍流流体时,数值阻尼可以显着降低。在该研究项目的下一阶段,我们计划使用微极材料模型来制作二维和三维变形体的动画。据我们所知,计算机图形学领域以前从未这样做过。通过这种方式,我们希望受益于微极模型的优势,特别是在模拟旋转大变形时。首先,我们计划开发一种体积体的模拟方法。然后我们想扩展这个方法来模拟二维壳。为了执行时间积分,我们在第一阶段开发的方法应该扩展以求解微极性模型所需的附加方程。此外,我们计划研究考虑旋转自由度的塑性变形动画。最后,我们希望使用额外的自由度来实现具有高分辨率表面网格的详细可视化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jan Stephen Bender其他文献

Professor Dr. Jan Stephen Bender的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jan Stephen Bender', 18)}}的其他基金

Physically-Based Animation of Cutting, Tearing and Fracturing in Computer Graphics
计算机图形学中基于物理的切割、撕裂和断裂动画
  • 批准号:
    411281008
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung echtzeitfähiger geometrischer Verfahren für eine interaktive chirurgische Simulation
交互式手术模拟实时几何方法的开发
  • 批准号:
    221909711
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Physically-based animation of deformable solids using Eulerian approaches in computer graphics
使用计算机图形学中的欧拉方法对可变形固体进行基于物理的动画
  • 批准号:
    310833819
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于自监督学习的非规则网格混采数据分离与重建方法研究
  • 批准号:
    42304125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
供水管网泄漏的多方特征融合机制及集成化诊断方法研究
  • 批准号:
    52370098
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
铅芯橡胶支座隔震体系热力耦合机理及设计方法研究
  • 批准号:
    52308527
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
极端气候条件下多能源互补系统设计优化的建模方法研究
  • 批准号:
    52306027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    DGDND-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了