Non-Markovian continuous-time quantum random walks of multiple interacting particles
多个相互作用粒子的非马尔可夫连续时间量子随机游走
基本信息
- 批准号:278224170
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In quantum physics, environmental noise represents the most prominent adversary that precludes the generation, control, and preservation of fundamental properties such as coherence, entanglement, and quantum correlations. More precisely, in such open quantum systems the phase properties of the associated quantum mechanical waves are randomly distorted by the environment, as a result their interference capability or ‘coherence’ tends to vanish. Indeed, the fragility of quantum coherence is one of the main impediments for the development of quantum-enhanced technologies. Clearly, identifying mechanisms to prevent or slow down decoherence effects in quantum systems is an issue of scientific and practical importance. Even though there exist some investigations examining the influence of decoherence and disorder on the dynamics of two-particle systems, the joint effects of decoherence, particle indistinguishability, and inter-particle interactions are poorly understood. The aim of this proposal is to investigate the behavior of multiple interacting particles traversing dynamically disordered quantum systems. In doing so, we have we will identify ways to impose tailored dynamic disorder into waveguide networks. The present proposal essentially interfaces theoretical and experimental investigations of the open quantum systems. Our studies will advance our understanding of the primary physical events occurring in quantum complex systems. In addition, our work will help to identify potential applications of decoherence to control photon encoded information and many-body quantum correlations. Importantly, our theoretical findings will always be tested experimentally within the context of integrated quantum photonics.
在量子物理学中,最突出的是绅士词,并更确切地保留了诸如连贯性和量子相关性的特性。由于它们的干扰能力或“连贯性”倾向于消失。 ,将其互动的关节效应和粒子间相互作用很差。量子系统中的量子系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Kurt Busch其他文献
Professor Dr. Kurt Busch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Kurt Busch', 18)}}的其他基金
SiGeSn-Nanostructures for Integrated Quantum Well Infrared Photodetectors
用于集成量子阱红外光电探测器的 SiGeSn 纳米结构
- 批准号:
390910964 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Light-path engineering in disordered waveguiding systems
无序波导系统中的光路工程
- 批准号:
278746770 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Durchstimmbarer oberflächenverstärkter Raman-Effekt an metallischen Nanostabensembles
金属纳米棒系综上的可调谐表面增强拉曼效应
- 批准号:
202983129 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Hydrodynamic Modeling of the Ultrafast Nonlinear Optical Response of Metallic Nanostructures
金属纳米结构超快非线性光学响应的流体动力学建模
- 批准号:
139246285 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Pulse propagation and soliton formation in nonlinear Photonic Band Gap materials
非线性光子带隙材料中的脉冲传播和孤子形成
- 批准号:
26333225 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Light propagation in strongly scattering media and photonic crystals
强散射介质和光子晶体中的光传播
- 批准号:
5261344 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
相似国自然基金
背景磁场平行方向不均匀性对非马尔可夫输运过程的输运系数影响研究
- 批准号:42374189
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
约束满足与马尔可夫决策的平滑博弈模型与算法
- 批准号:62302273
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动荡变革期国际工程承包商社会责任的马尔可夫决策机理研究
- 批准号:72301045
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
马尔可夫近似下超冷费米气体的耗散动力学研究
- 批准号:12304290
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
隐马尔可夫变系数回归模型的贝叶斯分析
- 批准号:12361061
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Thermodynamics of non-Markovian open quantum systems
非马尔可夫开放量子系统的热力学
- 批准号:
23KF0293 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
ExpandQISE: Track 1: Analog quantum simulation of non-Markovian dynamics of multi-qubit systems
ExpandQISE:轨道 1:多量子位系统非马尔可夫动力学的模拟量子模拟
- 批准号:
2328948 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
- 批准号:
2320328 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2306769 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant