GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures

GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池

基本信息

  • 批准号:
    2427203
  • 负责人:
  • 金额:
    $ 48.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-15 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The workhorse of energy storage for transportation and personal electronics has been, and remains, the lithium-ion battery. And while that technology has proven to be quite robust and useful, one of its major drawbacks is the amount of energy they store. An alternate battery technology that has seen extensive research in the last decade is lithium-sulfur (Li-S) batteries. All else being equal and assuming some hurdles can be overcome, the Li-S battery would have 2-3 times the energy storage capacity of current lithium-ion batteries. It follows that if an electric car’s current range is 200 miles, its range if equipped with a Li-S battery would be 400-600 miles. Two important hurdles that need to be overcome for Li-S batteries are: the nature of the electrolyte between the electrodes and their rapid fade. In this project, the researchers, together with industry partners, will address both problems. Currently, most of the research in Li-S batteries make use of electrolytes (ether) that are highly volatile and pose safety risks when operated above room temperature. Moreover, additives to this electrolyte comes with serious transport regulations due to degassing safety concerns. In this project, the researchers will make use of the same electrolyte that is currently being used for Li-ion batteries, which has an excellent safety record and can be used at temperatures higher than room temperature. The second problem of the rapid fade in capacity with cycling is another challenge. To solve that problem the researchers will study new 2-dimensional materials (think sheets of paper at the atomic level) to immobilize the S, both physically and chemically, to prevent it from shuttling between the battery electrodes that leads to their fade. In terms of broader impact, the researchers, by partnering with a major battery company and an end-use heavy-duty automotive company, will ensure industrial relevance of the research. If successful, this technology could lead to longer lasting batteries, creating new jobs and ensuring that the United States becomes a major player in the energy storage field. Educational broader impact will be achieved by providing training and research opportunities for graduate students pursuing PhDs and undergraduates’ involvement in the research. This fundamental GOALI project will address two key barriers for Li-S battery performance, an electrolyte that can operate at higher temperatures and mitigation of capacity loss due to polysulfide shuttling loss. The project will study a new class of materials to host sulfur, S-terminated MXenes. MXenes are two-dimensional (2D) carbides and/or nitrides discovered at Drexel in 2011 that exhibit metallic conductivity. Preliminary results have shown that MXenes are one of the few material platforms that allow both physical and chemical confinement/immobilization of S, thus reducing/minimizing the polysulfide shuttle effect. The MXenes’ metallic conductivity and “dual-immobilization” strategy will allow stable operation in carbonate electrolytes, while still enabling 70 wt.% S, with 7 mg/cm2 loadings and 83% effective S utilization (1400 mAh/g) – all necessary pre-requisites to approach the application targeted 500 Wh/kg. The cathode research on synthesis, fabrication, and study of redox activity of S-MXene cathodes will be integrated with carbonate electrolyte engineering to further suppress possible adverse polysulfide-carbonate reactions by reducing the electrophilicity. Post-mortem and in-operando spectroscopic and microscopic studies will be conducted to elucidate the quasi-solid-state redox pathways in S-terminated MXene hosts, detect the presence of polysulfides, or other undesired side products, from S-carbonate interactions. Cell-level Newman-type modeling, identifying limiting phenomena will further guide material design. The ultimate objective of this GOALI project - in collaboration with industry partners - is to develop Li-S batteries with practical S-loadings and S-utilizations that stably operate in high boiling point commercial carbonate electrolytes for application in heavy-duty battery electric vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
运输和个人电子产品的能源存储的主力一直是锂离子电池,虽然该技术已被证明非常强大和有用,但其主要缺点之一是其存储的能量量。过去十年中得到广泛研究的电池技术是锂硫 (Li-S) 电池,在其他条件相同并假设可以克服一些障碍的情况下,锂硫电池的储能容量将是现有技术的 2-3 倍。目前的锂离子由此可见,如果电动汽车目前的续航里程为 200 英里,那么如果配备锂硫电池,其续航里程将达到 400-600 英里。 锂硫电池需要克服的两个重要障碍是:在这个项目中,研究人员将与行业合作伙伴一起解决这两个问题。目前,大多数锂硫电池的研究都使用高度挥发性的电解质(乙醚)。构成安全此外,由于脱气安全问题,该电解质的添加剂具有严格的运输规定。在该项目中,研究人员将使用目前用于锂离子电池的相同电解质。出色的安全记录,并且可以在高于室温的温度下使用。第二个问题是循环过程中容量快速衰减。为了解决这个问题,研究人员将研究新的二维材料(想想纸张)。原子水平)来固定从物理和化学角度来看,电池电极之间的穿梭会导致其褪色,从更广泛的影响来看,研究人员将通过与一家大型电池公司和一家最终用途重型汽车公司合作,确保这一点。如果成功,这项技术可能会带来更持久的电池,创造新的就业机会,并确保美国成为能源存储领域的主要参与者,并通过提供培训和研究机会来实现更广泛的教育影响。攻读博士学位的研究生和本科生的参与这项基础性的 GOALI 项目将解决锂硫电池性能的两个关键障碍,即能够在更高温度下运行的电解质以及减轻多硫化物穿梭损耗造成的容量损失。该项目将研究一种新型材料。硫、S 封端的 MXene 是 2011 年在 Drexel 发现的具有金属导电性的二维 (2D) 碳化物和/或氮化物。研究表明,MXenes 是少数能够同时物理和化学限制/固定 S 的材料平台之一,从而减少/最小化多硫化物穿梭效应。MXenes 的金属导电性和“双固定化”策略将允许在碳酸盐电解质中稳定运行。 ,同时仍可实现 70 wt.% S,负载量为 7 mg/cm2,有效 S 利用率为 83% (1400 mAh/g)——所有这些都是必需的实现 500 Wh/kg 目标应用的先决条件 S-MXene 阴极的合成、制造和氧化还原活性研究将与碳酸盐电解质工程相结合,通过减少可能的不利多硫化物-碳酸盐反应。将进行尸检和操作中的光谱和显微镜研究,以阐明 S 端接的准固态氧化还原途径。 MXene 通过 S-碳酸盐相互作用检测多硫化物或其他不需要的副产物的存在,识别限制现象将进一步指导材料设计 - 与行业合作。合作伙伴 - 旨在开发具有实际硫负载和硫利用率的锂硫电池,该电池可在高沸点商用碳酸盐电解质中稳定运行,用于重型电池电动汽车。该奖项反映了 NSF 的法定要求使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vibha Kalra其他文献

A non-confined gamma monoclinic sulfur cathode in carbonate electrolyte based room temperature K–S batteries
  • DOI:
    10.1039/d3ta01751f
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Rahul Pai;Neal Amadeus Cardoza;Varun Natu;Michel W. Barsoum;Vibha Kalra
  • 通讯作者:
    Vibha Kalra
High-energy density nanofiber-based solid-state supercapacitors
  • DOI:
    10.1039/c5ta05552k
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Daniel W. Lawrence;Chau Tran;Arun T. Mallajoysula;Stephen K. Doorn;Aditya Mohite;Gautam Gupta;Vibha Kalra
  • 通讯作者:
    Vibha Kalra
Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries
  • DOI:
    10.1039/c9ta00327d
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Arvinder Singh;Vibha Kalra
  • 通讯作者:
    Vibha Kalra
Using common salt to impart pseudocapacitive functionalities to carbon nanofibers
  • DOI:
    10.1039/c4ta05121a
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Richa Singhal;Vibha Kalra
  • 通讯作者:
    Vibha Kalra
Solid–liquid–solid mediated artificial SEI coated stable lithium and high-sulfur percentage SPAN for high performance Li–S batteries
  • DOI:
    10.1039/d3ya00423f
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krishna Sarode;Taber Yim;Rhyz Pereira;Neal Cardoza;Vibha Kalra
  • 通讯作者:
    Vibha Kalra

Vibha Kalra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vibha Kalra', 18)}}的其他基金

GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
  • 批准号:
    2211049
  • 财政年份:
    2022
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Standard Grant
PFI-TT: Development of Next Generation Sulfur-based Batteries for Enhanced Run Time and Reduced Weight
PFI-TT:开发下一代硫基电池以延长运行时间并减轻重量
  • 批准号:
    1919177
  • 财政年份:
    2019
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Standard Grant
EAGER/GOALI: 3D Printing of Nanostructured Battery Electrodes
EAGER/GOALI:纳米结构电池电极的 3D 打印
  • 批准号:
    1938787
  • 财政年份:
    2019
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Standard Grant
Confined Self Assembly of Semiconducting Polymers in Nanofibers
纳米纤维中半导体聚合物的限域自组装
  • 批准号:
    1537827
  • 财政年份:
    2016
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Standard Grant
Hybrid Carbon-Polymer Supercapacitors for High Energy Storage and Power Delivery
用于高能量存储和电力输送的混合碳聚合物超级电容器
  • 批准号:
    1463170
  • 财政年份:
    2015
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Standard Grant
Nanofiber-based Novel Electrode Architecture for Lithium-Air batteries
基于纳米纤维的锂空气电池新型电极架构
  • 批准号:
    1236466
  • 财政年份:
    2012
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Standard Grant
CAREER: Highly-ordered Electrode/Catalyst Assembly in Proton Exchange Membrane Fuel Cells for Enhanced Catalyst Utilization
职业:质子交换膜燃料电池中的高度有序电极/催化剂组件,以提高催化剂利用率
  • 批准号:
    1150528
  • 财政年份:
    2012
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Continuing Grant
EAGER: Confined Self Assembly of Fully Conjugated Rod-Rod Diblock Copolymers in Nanofibers
EAGER:纳米纤维中完全共轭棒-棒二嵌段共聚物的受限自组装
  • 批准号:
    1144376
  • 财政年份:
    2011
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Standard Grant

相似国自然基金

组蛋白乳酸化激活ac4C乙酰化促进葡萄膜黑色素瘤发展的作用机制研究
  • 批准号:
    82373298
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
15-PGDH通过AMPK信号通路调控NAFLD发生发展的分子机制研究
  • 批准号:
    82300967
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
  • 批准号:
    72303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新物质主义视角下旅游商品带动地方发展的格局、过程及作用机制
  • 批准号:
    42371235
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
tRNAMet通过调控富含AUG密码子基因的蛋白翻译促进HCC发展的机制研究
  • 批准号:
    82373963
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Engines Development Award: Developing innovative solutions for next-generation factory-built housing (IN, MI)
NSF 发动机开发奖:为下一代工厂建造的住房开发创新解决方案(印第安纳州、密歇根州)
  • 批准号:
    2315483
  • 财政年份:
    2024
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Cooperative Agreement
Next Generation Water Cherenkov Detector Technology Development For The Study Of Supernova Neutrinos
用于超新星中微子研究的下一代水切伦科夫探测器技术开发
  • 批准号:
    MR/Y034082/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.85万
  • 项目类别:
    Fellowship
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
  • 批准号:
    10751480
  • 财政年份:
    2024
  • 资助金额:
    $ 48.85万
  • 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
  • 批准号:
    10515612
  • 财政年份:
    2023
  • 资助金额:
    $ 48.85万
  • 项目类别:
University of Wisconsin Prostate SPORE
威斯康星大学前列腺孢子
  • 批准号:
    10555398
  • 财政年份:
    2023
  • 资助金额:
    $ 48.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了