Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media

合作研究:多孔介质中振荡流和多相传热的多尺度研究

基本信息

  • 批准号:
    2414527
  • 负责人:
  • 金额:
    $ 13.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

In our evolving energy landscape, it is crucial to maximize the efficiency of energy technologies and understand the impact of fossil fuel extraction and carbon storage. Technologies that are central to this - subsurface remediation, geothermal energy systems, batteries, fracking, etc. - are governed by complicated flow through porous media, which is not currently well understood. A porous medium has multiple, convoluted pathways of various sizes for fluid flow through an otherwise solid material. The flows can be single phase (liquid/gas) or multiphase, and can occur at constant temperature or with heat transfer. The flow can occur in a single direction, or oscillate. When all of these are combined, nonlinear effects can result, which could improve the behavior of a system or negatively impact performance, depending on how the effects are propagated and understood. The major objective of this work is to experimentally study oscillating and multiphase flows in porous media, and then develop a numerical approach that can be used to gain further insight into the fundamental behavior, thereby improving energy efficiency, and lowering both economic costs and environmental impacts. Although porous media flow sounds esoteric, it occurs in many daily applications (brewing coffee, etc.). Therefore, this project is well suited for pre-college outreach, and several topics related to it will be used to engage underrepresented students from K-12 classrooms. In addition, this project will promote STEM education via an inter-college educational collaboration for undergraduate design projects, and demonstration units about porous media flows will be created for pre-college classrooms.This research will combine experimental and numerical techniques to describe the effects of the physical porous structure, the flow/heat transfer boundary layer (including a comparison between oscillation and non-oscillation) and the variations in wettability from materials and manufacturing process. Experimentally, naturally-occurring and engineered porous media will be scanned, analyzed, and catalogued in a database, and an experimental platform will also be designed and developed to study in situ oscillating and multiphase transport phenomena inside porous media using the Neutron Imaging Facility at Oak Ridge National Lab. This experimental work will be coupled with numerical simulations through parallel development of a multiphase discrete Boltzmann method model and a hybrid discrete/lattice Boltzmann method model to capture kinetic behaviors and multiscale interactions, in order to elucidate the fundamental behavior of oscillating multiphase thermofluidic phenomena and fluid-solid interactions. The knowledge developed in this project will, in turn, be used to improve the design of porous structures in a variety of energy applications, including thermal storage in concentrated solar power plants, carbon retention in rock structures, and fuel cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在我们不断发展的能源格局中,最大限度地提高能源技术的效率并了解化石燃料开采和碳储存的影响至关重要。对此至关重要的技术——地下修复、地热能系统、电池、水力压裂等——受到多孔介质中复杂流动的控制,而目前人们对此还没有很好的理解。多孔介质具有多个不同尺寸的盘旋路径,用于流体流过固体材料。流动可以是单相(液体/气体)或多相,并且可以在恒温或传热的情况下发生。流动可以沿单一方向发生,也可以发生振荡。当所有这些结合在一起时,可能会产生非线性效应,这可能会改善系统的行为或对性能产生负面影响,具体取决于效应的传播和理解方式。这项工作的主要目标是通过实验研究多孔介质中的振荡流和多相流,然后开发一种数值方法,可用于进一步了解基本行为,从而提高能源效率,降低经济成本和环境影响。尽管多孔介质流听起来很深奥,但它出现在许多日常应用中(冲泡咖啡等)。因此,该项目非常适合大学预科外展,并且与之相关的几个主题将用于吸引 K-12 课堂中代表性不足的学生。此外,该项目将通过本科生设计项目的校际教育合作来促进 STEM 教育,并将为大学预科教室创建有关多孔介质流的示范单元。这项研究将结合实验和数值技术来描述多孔介质流的影响物理多孔结构、流动/传热边界层(包括振荡和非振荡之间的比较)以及材料和制造工艺引起的润湿性变化。在实验上,天然存在的和工程的多孔介质将被扫描、分析并在数据库中编目,还将设计和开发一个实验平台,利用 Oak 的中子成像设施研究多孔介质内的原位振荡和多相输运现象。里奇国家实验室。这项实验工作将通过并行开发多相离散玻尔兹曼方法模型和混合离散/格子玻尔兹曼方法模型与数值模拟相结合,以捕获动力学行为和多尺度相互作用,以阐明振荡多相热流现象和流体的基本行为- 牢固的互动。该项目中开发的知识将反过来用于改进各种能源应用中多孔结构的设计,包括聚光太阳能发电厂的热储存、岩石结构中的碳保留和燃料电池。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leitao Chen其他文献

Thermal analysis of a heat pump-based liquid gap membrane distillation H2SO4 system
基于热泵的液隙膜蒸馏 H2SO4 系统的热分析
  • DOI:
    10.1016/j.cep.2021.108509
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Yue;Y. Peng;Leitao Chen;L. Schaefer
  • 通讯作者:
    L. Schaefer
Endoreversible Modeling and Optimization of a Multistage Heat Engine System with a Generalized Heat Transfer Law via Hamilton-Jacobi-Bellman Equations and Dynamic Programming
通过 Hamilton-Jacobi-Bellman 方程和动态规划,利用广义传热定律对多级热机系统进行内可逆建模和优化
  • DOI:
    10.12693/aphyspola.119.747
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Shaojun Xia;Leitao Chen;F. Sun
  • 通讯作者:
    F. Sun
Godunov-type upwind flux schemes of the two-dimensional finite volume discrete Boltzmann method
二维有限体积离散玻尔兹曼法Godunov型迎风通量格式
  • DOI:
    10.1016/j.camwa.2018.01.034
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leitao Chen;L. Schaefer
  • 通讯作者:
    L. Schaefer
Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method.
有限体积离散玻尔兹曼方法的半拉格朗日隐式 Bhatnagar-Gross-Krook 碰撞模型。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Leitao Chen;S. Succi;Xiaofeng Cai;L. Schaefer
  • 通讯作者:
    L. Schaefer
Enzymatic production of 5'-inosinic acid by AMP deaminase from a newly isolated Aspergillus oryzae.
新分离的米曲霉中的 AMP 脱氨酶酶促生产 5-肌苷酸。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Shubo Li;Leitao Chen;Yangjun Hu;Guo;Mouming Zhao;Yuan Guo;Z. Pang
  • 通讯作者:
    Z. Pang

Leitao Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leitao Chen', 18)}}的其他基金

Research Initiation Award: A Boltzmann Model for Multi-Scale and Multi-Physics/Chemistry Transport Phenomena in Porous Media
研究启动奖:多孔介质中多尺度和多物理/化学输运现象的玻尔兹曼模型
  • 批准号:
    2200515
  • 财政年份:
    2022
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2223171
  • 财政年份:
    2022
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant

相似国自然基金

多尺度仿生聚醚酮酮修复体时空调控多细胞交互作用诱导承力部位血管化骨再生的作用机制研究
  • 批准号:
    32371396
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
PLA/PPC交替多层薄膜的多尺度结构设计及性能强化研究
  • 批准号:
    52373046
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
深部高温页岩水力裂缝时效扩展机理的多尺度研究
  • 批准号:
    12302503
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带奇异系数的多尺度随机(偏)微分方程的渐近行为研究
  • 批准号:
    12301179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机光电氟代体系的构筑、调控与多尺度功能研究
  • 批准号:
    22365032
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
  • 批准号:
    2230435
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
  • 批准号:
    2324580
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
  • 批准号:
    2331482
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
  • 批准号:
    2324579
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了