Conference: Comparative Prime Number Theory Symposium

会议:比较素数论研讨会

基本信息

  • 批准号:
    2411537
  • 负责人:
  • 金额:
    $ 1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The workshop Comparative Prime Number Theory Symposium, which is the first scientific event to focus predominantly on this subject, will take place on the UBC--Vancouver campus from June 17--21, 2024. One of the first and central topics in the research of number theory is to study the distribution of prime numbers. In 1853, Chebyshev observed that there seems to be more primes taking the form of a multiple of four plus three than a multiple of four plus one. This phenomenon is now referred to as Chebyshev's bias and its study led to a new branch of number theory, comparative prime number theory. As a subfield of analytic number theory, research in this area focuses on examining how prime counting functions and other arithmetic functions compare to one another. This field has witnessed significant growth and activity in the last three decades, especially after the publication of the influential article on Chebyshev's bias by Rubinstein and Sarnak in 1994. The primary goal of this award will be to provide participant support and fund US-based early career researchers to attend this unique event, giving them the opportunity to discuss new ideas, advance research projects, and interact with established researchers.The symposium will bring together many leading and early-career researchers with expertise and interest in comparative prime number theory to present and discuss various aspects of current research in the field, with special emphasis on results pertaining to the distribution of counting functions in number theory and zeros of L-functions, consequences of quantitative Linear Independence, oscillations of the Mertens sum, and the frequency of sign changes. Through this symposium, we will advertise the recently disseminated survey "An Annotated Bibliography for Comparative Prime Number Theory" by Martin et al which aims to record every publication within the topic of comparative prime number theory, together with a summary of results, and presenting a unified system of notation and terminology for referring to the quantities and hypotheses that are the main objects of study. Another important outcome of the symposium will be compiling and publicizing a problem list, with the hope of stimulating future research and providing young researchers with potential projects. Information about the conference can be found at the website: https://sites.google.com/view/crgl-functions/comparative-prime-number-theory-symposiumThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wanlin Li其他文献

aPhyloGeo-Covid: A Web Interface for Reproducible Phylogeographic Analysis of SARS-CoV-2 Variation using Neo4j and Snakemake
aPhyloGeo-Covid:使用 Neo4j 和 Snakemake 对 SARS-CoV-2 变异进行可重复系统发育地理学分析的 Web 界面
Exceptional biases in counting primes over function fields
函数域上素数计数的异常偏差
Design and Realization of Unmanned Multi‐mode Collaborative Intelligent Driving System
无人驾驶多模协同智能驾驶系统设计与实现
Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer
工程藻类:一种有效治疗缺氧癌症的新型产氧系统
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Yue Qiao;Fei Yang;Tingting Xie;Zhen Du;Danni Zhong;Yuchen Qi;Yangyang Li;Wanlin Li;Zhiming Lu;Jianghong Rao;Yi Sun;Min Zhou
  • 通讯作者:
    Min Zhou
Application of slow-release carbon sources embedded in polymer for stable and extended power generation in microbial fuel cells.
应用嵌入聚合物中的缓释碳源在微生物燃料电池中实现稳定和延长发电。
  • DOI:
    10.1016/j.chemosphere.2019.125515
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Wanlin Li;X. Quan;Liang Chen;Yu Zheng
  • 通讯作者:
    Yu Zheng

Wanlin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wanlin Li', 18)}}的其他基金

The Frobenius action on curves and abelian varieties
曲线和阿贝尔簇上的弗罗贝尼乌斯作用
  • 批准号:
    2302511
  • 财政年份:
    2023
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant

相似国自然基金

大气湍流能量级串的主要模式及其标度律统计特性的比较研究
  • 批准号:
    41675010
  • 批准年份:
    2016
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
主要家禽物种蛋清的比较蛋白质组学研究
  • 批准号:
    31501915
  • 批准年份:
    2015
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目
推理心理学几种主要理论模型的实验比较研究
  • 批准号:
    31460252
  • 批准年份:
    2014
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目
鼠兔属主要类群的比较染色体图谱构建及系统进化研究
  • 批准号:
    31301016
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
东北针阔混交林主要树种的比较系统发生生物地理学研究
  • 批准号:
    31100307
  • 批准年份:
    2011
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Models and Gene Therapies for AAT Deficiency
AAT 缺乏症的模型和基因疗法
  • 批准号:
    10674934
  • 财政年份:
    2021
  • 资助金额:
    $ 1万
  • 项目类别:
Models and Gene Therapies for AAT Deficiency
AAT 缺乏症的模型和基因疗法
  • 批准号:
    10463802
  • 财政年份:
    2021
  • 资助金额:
    $ 1万
  • 项目类别:
Comparative prime number theory and L-functions
比较素数论和 L 函数
  • 批准号:
    435815-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Grants Program - Individual
Comparative prime number theory and L-functions
比较素数论和 L 函数
  • 批准号:
    435815-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Grants Program - Individual
Comparative prime number theory and L-functions
比较素数论和 L 函数
  • 批准号:
    435815-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了