Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing

协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法

基本信息

  • 批准号:
    2407690
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Database analytics is crucial for decision-making across various industries and fields of inquiry. However, there is a challenge: analyzing large amounts of data using traditional methods takes more time and money as the volume of data grows. Resolving this issue is vital for enterprises to stay competitive through fast and accurate data-driven decision-making and to keep up with rapid growth in data volumes. In the past, hardware and software for analytics could be developed separately, benefiting from Moore's Law (doubling of transistor density with each transistor generation) and Dennard scaling (which allowed Moore's Law to proceed without increasing power density). This scaling allowed the industry to steadily improve the performance of general-purpose hardware. However, we have now reached the physical limits of these trends and need new hardware approaches to enhance analytics speed and efficiency. Furthermore, processing units are now much faster than memory, so applications with large volumes of data are increasingly bottlenecked by memory accesses. This research, therefore, focuses on memory devices, in particular designing ``intelligent'' memory capable of computing results near the stored data, and proposes a solution by redesigning both hardware and software components of an analytics pipeline to work synergistically, addressing the data analytics performance issue from the ground up. This innovative approach has the potential to significantly improve the efficiency of data analytics. The project is a collaboration between one database and software researcher at the University of Wisconsin-Madison (UW) and two computer architecture and systems researchers at Cornell University and the University of Virginia (UVA). The project is organized into four thrusts. Thrust 1 aims to develop mechanisms for in-place data analytics query processing on the dynamic random access memory (DRAM) side and explore the synergies between intelligent DRAM and other processing units. Thrust 2 focuses on processing in memory (PIM) designs for static random-access memory (SRAM)-based caches, exploring associative processing (AP) and its applicability to data analytics workloads. Thrust 3 takes a holistic approach to accelerate analytics queries across both SRAM and DRAM-based PIM designs. It proposes a Domain-Specific Language (DSL)-based approach using an operational algebra, decomposing queries into a dataflow graph and optimizing their execution across different PIMs and the Central Processing Unit (CPU). Finally, Thrust 4 addresses the need for evaluation frameworks in the database-hardware co-design approach by developing a simulation infrastructure and benchmarks that can be used by the broader architecture and database research communities. Besides training students involved in this project across the hardware-software boundaries, the project will also support outreach efforts in entrepreneurship education at UW. Additionally, there are outreach plans to Native American high school students through an effort at Cornell, and at UVA, the project will contribute to ongoing efforts to build long-term collaborations with Historically Black Colleges and Universities (HBCUs) and Minority-Serving Institutions (MSIs) in the Virginia area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据库分析对于各个行业和调查领域的决策至关重要。然而,存在一个挑战:随着数据量的增长,使用传统方法分析大量数据需要更多的时间和金钱。解决这个问题对于企业通过快速、准确的数据驱动决策保持竞争力并跟上数据量的快速增长至关重要。过去,分析用的硬件和软件可以单独开发,这得益于摩尔定律(每一代晶体管的晶体管密度加倍)和登纳德缩放比例(允许摩尔定律在不增加功率密度的情况下继续进行)。这种扩展使业界能够稳步提高通用硬件的性能。然而,我们现在已经达到了这些趋势的物理极限,需要新的硬件方法来提高分析速度和效率。此外,处理单元现在比内存快得多,因此具有大量数据的应用程序越来越受到内存访问的瓶颈。因此,这项研究重点关注存储设备,特别是设计能够计算存储数据附近结果的“智能”存储器,并提出了一种解决方案,通过重新设计分析管道的硬件和软件组件以协同工作,解决数据问题从头开始分析性能问题。这种创新方法有可能显着提高数据分析的效率。该项目是威斯康星大学麦迪逊分校 (UW) 的一名数据库和软件研究人员与康奈尔大学和弗吉尼亚大学 (UVA) 的两名计算机体系结构和系统研究人员合作的成果。该项目分为四个重点。 Thrust 1 旨在开发动态随机存取存储器 (DRAM) 端就地数据分析查询处理的机制,并探索智能 DRAM 与其他处理单元之间的协同作用。 Thrust 2 专注于基于静态随机存取存储器 (SRAM) 的缓存的内存处理 (PIM) 设计,探索关联处理 (AP) 及其对数据分析工作负载的适用性。 Thrust 3 采用整体方法来加速跨 SRAM 和基于 DRAM 的 PIM 设计的分析查询。它提出了一种基于领域特定语言 (DSL) 的方法,使用运算代数,将查询分解为数据流图,并优化其跨不同 PIM 和中央处理单元 (CPU) 的执行。最后,Thrust 4 通过开发可供更广泛的架构和数据库研究社区使用的模拟基础设施和基准,解决了数据库硬件协同设计方法中评估框架的需求。除了跨硬件软件边界培训参与该项目的学生外,该项目还将支持威斯康星大学创业教育的推广工作。此外,通过康奈尔大学和 UVA 的努力,还制定了针对美国原住民高中生的外展计划,该项目将有助于持续努力与历史悠久的黑人学院和大学 (HBCU) 以及少数族裔服务机构 (HBCU) 建立长期合作关系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jignesh Patel其他文献

Fast Regular Expression Matching Using Small TCAMs for Network Intrusion Detection and Prevention Systems
使用小型 TCAM 进行快速正则表达式匹配用于网络入侵检测和预防系统
  • DOI:
  • 发表时间:
    2010-08-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Meiners;Jignesh Patel;Eric Norige;E. Torng;A. Liu
  • 通讯作者:
    A. Liu
Thrombophilia Profile in Budd-Chiari Syndrome and Splanchnic Vein Thrombosis: A Study from Western India.
布加氏综合征和内脏静脉血栓形成的血栓形成倾向:来自印度西部的一项研究。
ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER
最小二乘法和零强迫接收器研究大规模多输入多输出系统中的导频污染
Comparison of intermittent and continuous extracorporeal treatments for the enhanced elimination of dabigatran
间歇性和连续性体外治疗强化达比加群消除的比较
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    J. Bouchard;M. Ghannoum;A. Bernier;D. Williamson;G. Kershaw;C. Weatherburn;J. Eris;Huyen A Tran;Jignesh Patel;D. Roberts
  • 通讯作者:
    D. Roberts
Long-term outcomes of different ablation strategies for ventricular tachycardia in patients with structural heart disease: systematic review and meta-analysis
不同消融策略治疗结构性心脏病室性心动过速的长期结果:系统评价和荟萃分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    David F Briceño;Jorge Romero;P. Villablanca;A. Londoño;J. Díaz;I. Maraj;S. A. Batul;N. Madan;Jignesh Patel;Anand D. Jagannath;S. Mohanty;P. Mohanty;C. Gianni;D. D. Della Rocca;Ahlam Sabri;Soo G. Kim;A. Natale;L. Di Biase
  • 通讯作者:
    L. Di Biase

Jignesh Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jignesh Patel', 18)}}的其他基金

Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2312739
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Elements: Software: Towards Efficient Embedded Data Processing
要素:软件:实现高效的嵌入式数据处理
  • 批准号:
    2407755
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Elements: Software: Towards Efficient Embedded Data Processing
要素:软件:实现高效的嵌入式数据处理
  • 批准号:
    1835446
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DCM: Data Management for Analytics Applications on Modern Architecture
BIGDATA:小型:DCM:现代架构上分析应用程序的数据管理
  • 批准号:
    1250886
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
III: Large: Collaborative Research: SciDB - An Array Oriented Data Management System for Massive Scale Scientific Data
III:大型:协作研究:SciDB - 用于大规模科学数据的面向数组的数据管理系统
  • 批准号:
    1110948
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
III: Medium: Energy-Efficient Data Processing
III:媒介:节能数据处理
  • 批准号:
    0963993
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
COMET: An Efficient and Scalable Trajectory Data Management System
COMET:高效且可扩展的轨迹数据管理系统
  • 批准号:
    0929988
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Integrated Biological Sequence Data Management
综合生物序列数据管理
  • 批准号:
    0926269
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Integrated Biological Sequence Data Management
综合生物序列数据管理
  • 批准号:
    0543272
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
COMET: An Efficient and Scalable Trajectory Data Management System
COMET:高效且可扩展的轨迹数据管理系统
  • 批准号:
    0414510
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了