EAGER: Exploring the Role of Copper Sulfides in Room Temperature Superconductors
EAGER:探索硫化铜在室温超导体中的作用
基本信息
- 批准号:2403985
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical SummaryMaterials make technological progress possible. For example, the battery materials inside laptops and smartphones enable the portability of these electronic devices by charging and recharging them. The magnetic materials in windmills allow them to harness the wind to generate the electricity that powers homes and businesses. It has long been a dream of scientists who study materials to discover one that would enable many technologies at once. Such a miracle material exists in the superconductor. It would enable applications in energy, human health, and computing technologies. In the last century, many such superconductors have been found, but they all have one major setback. These materials become superconductors only at extremely low temperatures. These temperatures are even lower than the coldest recorded temperature on Earth. Furthermore, the handful of materials that are superconducting near room temperature require pressures found only near the center of the planet. Therefore, the long-sought goal of scientists has been to find a material that is an effective superconductor near room temperature and at pressures on the surface of the Earth. This EAGER award, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, will examine the role the byproducts consisting of copper and sulfur play in a sample reported to be such a miracle material in 2023. This endeavor includes the careful preparation of samples consisting of copper and sulfur and testing them under the most rigorous conditions to uncover the world’s first potential room-temperature superconductor. Technical SummaryThis EAGER award, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, will explore the role that copper sulfides plays in the potential room-temperature superconductor called LK-99 reported in 2023. The research team at the University of Maryland carries out solid state chemistry studies to isolate the copper sulfide minority phase contained in LK-99. Unlike in the LK-99 manuscripts, however, the working hypothesis here is that it is more likely that this minority phase, Cu2-xS, is the superconductor and not the majority phase, lead oxyapatite, which is a known wide-band gap insulator. This hypothesis was formed since Cu2S displays interesting high-temperature physics including a superionic phase transition, a crystallographic phase transition, and an insulator-to-metal transition. The latter is an electronic one driven by the hole-doping brought on by copper site vacancies, which is the x in Cu2-xS. Since these transitions also occur near 380 K, they would explain why the room-temperature superconductivity reported in LK-99 should be attributed to Cu2-xS. The approach here is to charge dope this phase by forming Cu2-xMxS phases where M is a metal with a different valence state from Cu+. This strategy is similar to suppressing phase transitions in the cuprates and iron-based superconductors, whereby electron or hole doping suppresses an antiferromagnetic phase transition, and a superconducting regime appears on the phase diagram. In the case of Cu2S, the relevant driver is not magnetism as in the cuprates and iron pnictides, but rather ionic forces coupled to the electronic structure that could drive the unconventional behavior. This EAGER grant surveys phase pure samples of different forms of Cu2-xS and Cu2-xMxS to understand how their crystallographic, heat and electronic transport, and magnetic properties change as a function of x. The research activities use both polycrystalline and single crystal samples to establish whether this phase is indeed the key to understanding the room-temperature Meissner effect reported in LK-99.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要材料使技术进步成为可能,例如,笔记本电脑和智能手机中的电池材料可以通过充电和充电来实现这些电子设备的便携性,风车中的磁性材料使它们能够利用风来发电,为家庭提供电力。长期以来,研究材料的科学家们一直梦想着发现一种能够同时实现多种技术的材料,它将能够在能源、人类健康和计算技术中得到应用。最后的近一个世纪以来,已经发现了许多这样的超导体,但它们都有一个重大缺陷,即这些材料只能在极低的温度下才能成为超导体,而且这些温度甚至低于地球上有记录的最冷温度。室温需要仅在地球中心附近存在的压力,因此,科学家们长期以来的目标是找到一种在室温附近和地球表面压力下有效的超导体材料。该奖项由 NSF 材料研究部的固态和材料化学项目支持,将研究由铜和硫组成的副产品在 2023 年据称是一种神奇材料的样品中所发挥的作用。这项工作包括精心准备由铜和硫组成的样品,并在最严格的条件下对其进行测试,以发现世界上第一个潜在的室温超导体。 NSF 材料研究部的化学项目将探索硫化铜在 2023 年报道的名为 LK-99 的潜在室温超导体中所发挥的作用。马里兰大学的研究团队进行固态化学研究,以分离铜然而,与 LK-99 手稿中包含的硫化物少数相不同,这里的工作假设更可能是这种少数相 Cu2-xS,是超导体,而不是主要相,即铅氧磷灰石,它是一种已知的宽带隙绝缘体,因为 Cu2S 显示出有趣的高温物理特性,包括超离子相变、晶体相变和绝缘体相变。后者是由铜位点空位引起的空穴掺杂驱动的电子跃迁,即 Cu2-xS 中的 x,因为这些跃迁也发生在 380 附近。 K,他们将解释为什么 LK-99 中报告的室温超导性应归因于 Cu2-xS。这里的方法是通过形成 Cu2-xMxS 相来对该相进行电荷掺杂,其中 M 是价态不同的金属。 Cu+ 这种策略类似于抑制铜酸盐和铁基超导体中的相变,通过电子或空穴掺杂抑制反铁磁相变,从而出现超导状态。在相图上,相关的驱动因素不是铜酸盐和铁磷化物中的磁性,而是与电子结构耦合的离子力,该力可以驱动不同的相纯样品。 Cu2-xS 和 Cu2-xMxS 的形式,以了解它们的晶体学、热和电子传输以及磁性如何随着 x 的变化而变化。确定这一阶段是否确实是理解 LK-99 中报告的室温迈斯纳效应的关键。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Efrain Rodriguez其他文献
Conceptual design and dimensional optimization of the linear delta robot with single legs for additive manufacturing
用于增材制造的单腿线性Delta机器人的概念设计和尺寸优化
- DOI:
10.1177/0959651819836915 - 发表时间:
2019-03-21 - 期刊:
- 影响因子:0
- 作者:
Efrain Rodriguez;A. Alvares;Cristhian I. Riaño - 通讯作者:
Cristhian I. Riaño
On-the-fly autonomous control of neutron diffraction via physics-informed Bayesian active learning
通过基于物理的贝叶斯主动学习对中子衍射进行动态自主控制
- DOI:
10.1063/5.0082956 - 发表时间:
2021-08-19 - 期刊:
- 影响因子:15
- 作者:
A. McDannald;M. Frontzek;A. Savici;M. Doucet;Efrain Rodriguez;Kate Meuse;Jessica Opsahl;D. Samarov;I. Takeuchi;W. Ratcliff;A. Kusne - 通讯作者:
A. Kusne
Expert system to implement STEP-NC data interface model on CNC machine
在数控机床上实现STEP-NC数据接口模型的专家系统
- DOI:
10.1007/s00170-023-12582-9 - 发表时间:
2023-11-18 - 期刊:
- 影响因子:0
- 作者:
K. Latif;Efrain Rodriguez;Renan Bonnard;Y. Yusof;A. Z. A. Kadir - 通讯作者:
A. Z. A. Kadir
Parametric Passive-Filter optimization Based on the Determinant Decision Diagram
基于行列式决策图的参数无源滤波器优化
- DOI:
10.1109/ropec48299.2019.9057047 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:0
- 作者:
Efrain Rodriguez;Serafin Ramos;J. Rico;Fern;o Otnelas;o - 通讯作者:
o
Machine learning modeling of superconducting critical temperature
超导临界温度的机器学习建模
- DOI:
10.1038/s41524-018-0085-8 - 发表时间:
2017-09-08 - 期刊:
- 影响因子:9.7
- 作者:
V. Stanev;C. Oses;A. Kusne;Efrain Rodriguez;J. Paglione;S. Curtarolo;I. Takeuchi - 通讯作者:
I. Takeuchi
Efrain Rodriguez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Efrain Rodriguez', 18)}}的其他基金
Global Centers Track 2: Developing Solutions to Decarbonize Emissions and Fuels
全球中心轨道 2:开发排放和燃料脱碳解决方案
- 批准号:
2330509 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Non-centrosymmetric Quantum Materials through Metal-amine Complexes
金属胺配合物的非中心对称量子材料
- 批准号:
2113682 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
American Chemical Society Spring 2019 National Meeting Symposium: ?Structure-Property Correlations in Functional Inorganic Materials?
美国化学会2019年春季全国会议研讨会:“功能无机材料的结构-性能相关性”
- 批准号:
1924451 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
American Chemical Society Spring 2019 National Meeting Symposium: ?Structure-Property Correlations in Functional Inorganic Materials?
美国化学会2019年春季全国会议研讨会:“功能无机材料的结构-性能相关性”
- 批准号:
1924451 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER:Designing Hund's Metals from Transition Metal Sulfides
职业:利用过渡金属硫化物设计洪德金属
- 批准号:
1455118 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
- 批准号:82303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
IL-6/MUL1调控STING泛素化抑制肝内胆管癌免疫应答的机制研究及干预新方案探索
- 批准号:82373323
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
VDAC1调控气道上皮细胞-ILC2细胞对话并诱导哮喘发病的机制探索及靶向干预研究
- 批准号:82300043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索普适的催组装基本原理
- 批准号:22372139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
- 批准号:82303616
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring the role of epigenetic mechanisms in the manifestation of Huntington's disease
探索表观遗传机制在亨廷顿舞蹈病表现中的作用
- 批准号:
MR/Y014685/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Exploring the adaptive role of genomic instability in Trypanosoma cruzi.
探索克氏锥虫基因组不稳定性的适应性作用。
- 批准号:
MR/Y001338/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
- 批准号:
2235856 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Exploring the role of social ties for well-being in adolescent children from serving military families
探索社会关系对服役军人家庭青少年儿童福祉的作用
- 批准号:
2877741 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Exploring envelope stress response toxicity and regulation in gram-negative bacteria
探索革兰氏阴性菌的包膜应激反应毒性和调节
- 批准号:
10629505 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: