Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System

合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统

基本信息

  • 批准号:
    2403408
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

As monolithic chips reach their technological and practical limits, the integration of chiplets is emerging as the primary mechanism to continuously scale up processor performance, improve power efficiency, enhance IP reuse at low cost, and expedite time-to-market. This new concept of composable chiplets is particularly appealing to the artificial intelligence (AI) sector, which is in a pressing need to deliver computing chips to support increasingly complex and diverse cognitive algorithms. This project aims to pioneer such a computing system, including new architectural and design automation tools, for massive AI workloads. The envisioned system will benefit various scenarios, ranging from high-performance computing applications to mobile and edge devices. This project also addresses the skill shortage in the semiconductor area, a crucial aspect for reshoring the semiconductor industry. It involves training students in the areas of heterogeneous system design, AI architectures, and design automation. The investigators plan to improve the knowledge base through new curriculum development, engaging undergraduate students in research through Research Experiences for Undergraduates (REU) supplement, and participating in outreach programs customized for K-12 students. In addition, this project will advocate web-based knowledge dissemination including releasing software codes and novel designs. Several workshops and tutorials promoting chiplet-based co-design have been organized by the investigators and will be continued.Distinguished from current practice of 2.5D/3D heterogeneous integration (HI), this project aims to transform the architecture of chiplet-based design through three unique perspectives: Miniaturization to reduce the chiplet size to the minimum (tiny chiplets) for high composability, guided by AI computing cores; Very-large-scale integration to integrate thousands of tiny chiplets to scale up computing power and diversity for big AI applications, offering unprecedented flexibility and efficiency for AI algorithm and system designers; and Reconfiguration on the package to enable adaptation to varying workloads and address thermal and reliability concerns in 2.5D/3D packaging. These innovations will push the limits of architecture and physical design, addressing challenges related to chiplet definition, interconnection, power and thermal integrity, and workload mapping. The objective is to create a suite of design automation tools, streamlining the complete design process of reconfigurable chiplet-based systems for big AI computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着单片芯片达到其技术和实际极限,小芯片的集成正在成为不断扩展处理器性能、提高能效、以低成本增强 IP 重用以及加快上市时间的主要机制。这种可组合小芯片的新概念对人工智能 (AI) 领域特别有吸引力,该领域迫切需要提供计算芯片来支持日益复杂和多样化的认知算法。该项目旨在开创这样一个计算系统,包括新的架构和设计自动化工具,用于大规模人工智能工作负载。设想的系统将有利于各种场景,从高性能计算应用程序到移动和边缘设备。该项目还解决了半导体领域的技能短缺问题,这是半导体行业回流的一个关键方面。它涉及对异构系统设计、人工智能架构和设计自动化领域的学生进行培训。研究人员计划通过新课程开发、通过本科生研究经验 (REU) 补充让本科生参与研究以及参与为 K-12 学生定制的外展计划来改善知识库。此外,该项目将倡导基于网络的知识传播,包括发布软件代码和新颖的设计。研究人员已经组织了多个促进基于chiplet的协同设计的研讨会和教程,并将继续进行。与当前2.5D/3D异构集成(HI)的实践不同,该项目旨在通过以下方式改变基于chiplet的设计架构:三个独特的视角: 小型化,将小芯片尺寸降至最小(微型小芯片),以实现高可组合性,以人工智能计算核心为指导;超大规模集成,集成数千个微小芯片,以扩展大型人工智能应用的计算能力和多样性,为人工智能算法和系统设计人员提供前所未有的灵活性和效率;对封装进行重新配置,以适应不同的工作负载并解决 2.5D/3D 封装中的散热和可靠性问题。这些创新将突破架构和物理设计的极限,解决与小芯片定义、互连、电源和热完整性以及工作负载映射相关的挑战。目标是创建一套设计自动化工具,简化用于大人工智能计算的可重构小芯片系统的完整设计流程。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的评估进行评估,认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Cao其他文献

Comparative study of the extraction selectivity of PFO-BPy and PCz for small to large diameter single-walled carbon nanotubes
PFO-BPy和PCz对小直径到大直径单壁碳纳米管的萃取选择性比较研究
  • DOI:
    10.1007/s12274-022-4425-0
  • 发表时间:
    2022-06-08
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Fang Liu;Xingxing Chen;Meiqi Xi;Nan Wei;Lan Bai;Lianmao Peng;Yu Cao;Xuelei Liang
  • 通讯作者:
    Xuelei Liang
Improving risk stratification in patients with chest pain: the Erlanger HEARTS3 score.
改善胸痛患者的风险分层:Erlanger HEARTS3 评分。
Cardiac Rehabilitation Programs for Chronic Heart Disease: A Bayesian Network Meta-analysis.
慢性心脏病的心脏康复计划:贝叶斯网络荟萃分析。
  • DOI:
    10.1016/j.cjca.2020.02.072
  • 发表时间:
    2020-02-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rongzhong Huang;S. Palmer;Yu Cao;Hong Zhang;Yang Sun;Wenhua Su;Liwen Liang;Sanrong Wang;Ying Wang;Yu Xu;N. D. Melgiri;Lihong Jiang;G. Strippoli;Xingsheng Li
  • 通讯作者:
    Xingsheng Li
Swin-Pose: Swin Transformer Based Human Pose Estimation
Swin-Pose:基于 Swin Transformer 的人体姿势估计
Delay-based congestion control for multipath TCP
基于延迟的多路径 TCP 拥塞控制

Yu Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Cao', 18)}}的其他基金

SHF: Small: Efficient and Accurate Learning with Low-Precision Components: A Cortex-Inspired Approach
SHF:小型:使用低精度组件进行高效、准确的学习:受皮质启发的方法
  • 批准号:
    1715443
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
SHF: Conference: Hardware and Algorithms for Learning On-a-chip; November 5, 2015; Austin, TX
SHF:会议:片上学习的硬件和算法;
  • 批准号:
    1545974
  • 财政年份:
    2015
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
REU SITE: Research on Biomedical Informatics
REU 站点:生物医学信息学研究
  • 批准号:
    1415477
  • 财政年份:
    2013
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
REU SITE: Research on Biomedical Informatics
REU 站点:生物医学信息学研究
  • 批准号:
    1156639
  • 财政年份:
    2012
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Fast Sign-Off of Nanoscale Memory: From Predictive Device Modeling to Statistical Circuit Synthesis
SHF:小型:协作研究:纳米级存储器的快速签核:从预测设备建模到统计电路综合
  • 批准号:
    1016831
  • 财政年份:
    2010
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
CAREER: Bridging the Technology-EDA Gap through Strategic Tools for Robust Nanometer Design
职业:通过稳健纳米设计的战略工具弥合技术与 EDA 差距
  • 批准号:
    0546054
  • 财政年份:
    2006
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了