Conference: Solvable Lattice Models, Number Theory and Combinatorics

会议:可解格子模型、数论和组合学

基本信息

  • 批准号:
    2401464
  • 负责人:
  • 金额:
    $ 2.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This award supports the participation of US-based researchers in the Conference on Solvable Lattice Models, Number Theory and Combinatorics that will take place June 24-26, 2024 at the Hamilton Mathematics Institute at Trinity College Dublin. Solvable lattice models first arose in the description of phase change in physics and have become useful tools in mathematics as well. In the past few years a group of researchers have found that they may be used to effectively model quantities arising in number theory and algebraic combinatorics. At the same time, other scholars have used different methods coming from representation theory to investigate these quantities. This conference will be a venue to feature these developments and to bring together researchers working on related questions using different methods and students interested in learning more about them.This conference focuses on new and emerging connections between solvable lattice models and special functions on p-adic groups and covering groups, uses of quantum groups, Hecke algebras and other methods to study representations of p-adic groups and their covers, and advances in algebraic combinatorics and algebraic geometry. Spherical and Iwahori Whittaker functions are examples of such special functions and play an important role in many areas. The website for this conference is https://sites.google.com/bc.edu/solomon-friedberg/dublin2024.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Solomon Friedberg其他文献

Représentations génériques du groupe unitaire à trois variables
三个变量的统一组通用表示
  • DOI:
    10.1016/s0764-4442(00)88562-6
  • 发表时间:
    1999-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Solomon Friedberg;Stephen S. Gelbart;Hervé Jacquet;Jonathan Rogawski
  • 通讯作者:
    Jonathan Rogawski

Solomon Friedberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Solomon Friedberg', 18)}}的其他基金

Automorphic Forms on Reductive Groups and Their Covers
还原群上的自守形式及其覆盖
  • 批准号:
    2100206
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant
Automorphic Forms and L-Functions
自守形式和 L 函数
  • 批准号:
    1801497
  • 财政年份:
    2018
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Topics in Automorphic Forms
自守形式主题
  • 批准号:
    1500977
  • 财政年份:
    2015
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant
Metaplectic Eisenstein series, crystal graphs, and quantum groups
Metaplectic Eisenstein 系列、晶体图和量子群
  • 批准号:
    1001326
  • 财政年份:
    2010
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
  • 批准号:
    0652609
  • 财政年份:
    2007
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Applications of Multiple Dirichlet Series to Analytic Number Theory
合作研究:FRG:多重狄利克雷级数在解析数论中的应用
  • 批准号:
    0353964
  • 财政年份:
    2004
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant
Automorphic L-functions and Sums of Automorphic L-functions
自同构 L 函数和自同构 L 函数之和
  • 批准号:
    9970118
  • 财政年份:
    1999
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
  • 批准号:
    9896186
  • 财政年份:
    1998
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
  • 批准号:
    9531957
  • 财政年份:
    1996
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Eisenstein Series on the Metaplectic Group
数学科学:爱森斯坦Metaplectic群系列
  • 批准号:
    8821762
  • 财政年份:
    1989
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

特殊初值下可积方程解的长时间渐近分析:Riemann-Hilbert方法
  • 批准号:
    12371249
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
非线性可积系统初边值问题的孤子解及其渐近性和稳定性研究
  • 批准号:
    12371255
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
  • 批准号:
    12361065
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于滑移锁解的可伸缩柔体机械臂变刚度机理及控制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可积系统在加权Sobolev初值下整体解的存在性和渐近性---RH方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

生体・環境・地質試料に汎用可能な包括的分子骨格組成解析による分子化石研究の新展開
通过适用于生物、环境和地质样品的全面分子骨架组成分析,分子化石研究取得新进展
  • 批准号:
    23K03558
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Real Estate Market and Macro Economy
房地产市场与宏观经济
  • 批准号:
    20H00082
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Non-perturbative aspects of quantum field theories from integrability
量子场论的可积性的非微扰方面
  • 批准号:
    20J10126
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
新しい対角化の手法による量子系の厳密解の研究
使用新的对角化方法研究量子系统的精确解
  • 批准号:
    19K03668
  • 财政年份:
    2019
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
音楽が現代社会の問題解決に資する可能性についての社会学的研究
关于音乐有助于解决现代社会问题的可能性的社会学研究
  • 批准号:
    19J01660
  • 财政年份:
    2019
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了