ERASE-PFAS: Understanding the surface-active properties of PFAS for enhanced removal by bubbling-assisted water treatment processes

ERASE-PFAS:了解 PFAS 的表面活性特性,通过鼓泡辅助水处理工艺增强去除效果

基本信息

项目摘要

PFAS are a group of manufactured chemicals that have been used in hundreds of different applications since the 1950s. One of their most important and life-saving applications is in the production of firefighting foams. The extreme stability of PFAS molecules makes them highly persistent in the environment, which has led to them being referred to as ‘forever’ chemicals. PFAS have been associated with numerous health effects in both humans and animals. PFAS are also widely detected in the environment, including in drinking water, groundwater, and landfill leachate. Unfortunately, commonly used water treatment processes do not remove PFAS efficiently. The goal of this project is to characterize the unique detergent-like properties of PFAS and use that information to develop an air bubble-assisted PFAS water treatment process. Like detergents, PFAS can accumulate at the surface of air-bubbles. The enriched PFAS layer at the water surface can then be removed leaving behind PFAS-free treated water. The specific objectives designed to achieve the goal of this project are to: i) characterize the mechanisms controlling PFAS interactions at air bubble surfaces, ii) identify conditions leading to increased accumulation of PFAS, and iii) use the results to develop an optimized bench-scale reactor using precision-controlled bubbles with commonly used water treatment chemicals to enhance PFAS removal. The simplicity and scalability of the proposed approach are ideal for application in combination with conventional unit processes used in drinking water treatment plants. Successful completion of this research holds promise for the development of cost-saving water treatment technology to help water utilities and other stakeholders address PFAS-related regulations. Additional benefits to society result from education and outreach to underserved populations to increase scientific literacy and diversify the Nation’s STEM workforce.PFAS exhibit both lipophobic and hydrophobic properties, and thus tend to accumulate at air-water interfaces due to surface tension interactions. The mechanisms governing the interaction of PFAS with air-bubbles are relatively understudied, and there are significant gaps in our knowledge of these processes. The proposed research is designed to address this important knowledge gap to provide a mechanistic understanding of air-water interfacial accumulation of PFAS. These results will be used to develop a bubble-assisted water treatment process to efficiently capture and remove PFAS from contaminated water. The governing hypotheses of this study are that: H1) introduction of nano- to micro-sized air bubbles in water can effectively capture and concentrate PFAS molecules at the air-water interface; and H2) the stability and lifetime of the accumulated PFAS at the air-water interface is dependent on the individual PFAS surface tension, presence of cationic modifiers, and self-assembly behavior at concentrations below their critical micelle concentration (CMC). The specific research objectives designed to test these hypotheses are to: i) determine the surface tension, self-assembly structure at the air-water interface, and CMC of selected PFAS using conventional and synchrotron X-ray scattering techniques as a function of water quality composition; ii) assess conditions that can increase air-water interface accumulation of short-chain PFAS to improve separation from source water; iii) elucidate the impact of bubble size on accumulation and subsequent extraction of PFAS from water; and iv) develop an optimized air-bubbling system in combination with conventional coagulants for effective removal of PFAS from water. Successful development of this approach may lead to effective and scalable treatment technology for removal of PFAS and, potentially, aqueous film forming foam (AFFF) from various sources such as drinking water, groundwater, and landfill leachate. More generally, knowledge on the interfacial accumulation of PFAS may reveal previously unrecognized fate and transport mechanisms of PFAS in the environment. Additional benefits to society result from increasing participation in STEM through outreach activities with the Simons Summer Research and Women in Science and Engineering programs to involve high school students and female undergraduates in hands-on research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PFAS 是一组人造化学品,自 20 世纪 50 年代以来已用于数百种不同的应用,其中最重要和拯救生命的应用之一是生产消防泡沫。 PFAS 分子的极高稳定性使其在环境中具有高度持久性。 PFAS 被广泛地存在于环境中,包括饮用水、地下水和垃圾填埋场,因此被称为“永久”化学品。不幸的是,常用的水处理工艺无法有效去除 PFAS,该项目的目标是表征 PFAS 的独特洗涤剂特性,并利用该信息开发气泡辅助的 PFAS 水处理工艺。 PFAS 可以积聚在气泡表面,然后可以去除水面上富集的 PFAS 层,留下不含 PFAS 的处理水。该项目的具体目标是: i) 表征。控制气泡表面 PFAS 相互作用的机制,ii) 确定导致 PFAS 积累增加的条件,以及 iii) 利用这些结果开发优化的小型反应器,使用精确控制的气泡和常用的水处理化学品来增强 PFAS 的去除该方法的简单性和可扩展性非常适合与饮用水处理厂中使用的传统单元工艺结合使用,这项研究的成功完成有望开发节省成本的水处理技术,以帮助水务公司和其他利益相关者。地址PFAS 相关法规对社会的额外好处来自对服务不足人群的教育和宣传,以提高科学素养并使国家 STEM 劳动力多样化。PFAS 具有疏脂性和疏水性,因此由于表面张力而易于在空气-水界面积聚。对 PFAS 与气泡相互作用的机制的研究相对较少,我们对这些过程的了解还存在重大差距,旨在解决这一重要的知识空白,以提供对这些过程的机械理解。这些结果将用于开发气泡辅助水处理工艺,以有效地捕获和去除污染水中的 PFAS。水中大小的气泡可以有效地捕获和浓缩空气-水界面上的 PFAS 分子;以及 H2) 空气-水界面处累积的 PFAS 的稳定性和寿命取决于单个 PFAS 的表面张力、阳离子的存在。改性剂的浓度以及低于其临界胶束浓度 (CMC) 时的自组装行为 旨在测试这些假设的具体研究目标是: i) 确定空气-水界面处的表面张力、自组装结构和 CMC。使用传统和同步加速器 X 射线散射技术对选定的 PFAS 进行分析,作为水质成分的函数;ii) 评估可增加短链 PFAS 空气-水界面积累的条件,以改善与水源水的分离;阐明气泡大小对 PFAS 积累和随后从水中提取的影响;以及 iv) 开发一种与传统混凝剂相结合的优化气泡系统,以有效去除水中的 PFAS。该方法的成功开发可能会带来有效且可扩展的效果。从饮用水、地下水和垃圾渗滤液等各种来源中去除 PFAS 和潜在的水成膜泡沫 (AFFF) 的处理技术 更一般地说,是关于界面积累的知识。 PFAS 可能揭示以前未被认识的 PFAS 在环境中的命运和传输机制,通过西蒙斯暑期研究和科学与工程女性项目的外展活动增加对 STEM 的参与,让高中生和女本科生参与其中,从而为社会带来额外的好处。 -研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arjunkrishna Venkatesan其他文献

Arjunkrishna Venkatesan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arjunkrishna Venkatesan', 18)}}的其他基金

ERASE-PFAS: Understanding the surface-active properties of PFAS for enhanced removal by bubbling-assisted water treatment processes
ERASE-PFAS:了解 PFAS 的表面活性特性,通过鼓泡辅助水处理工艺增强去除效果
  • 批准号:
    2052772
  • 财政年份:
    2021
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant

相似国自然基金

全氟壬氧基苯磺酸钠(OBS)在小鼠肝脏中蓄积并诱导肝毒性的分子机制
  • 批准号:
    22306102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去除水中新PFAS的高效选择性氟化-季铵COFs材料的构建及吸附机理研究
  • 批准号:
    22366033
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于细胞表面展示的污水PFAS类污染降解及机理研究
  • 批准号:
    52300039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
典型全氟辛磺酸替代物在水稻中的分布特征及代谢转化机制研究
  • 批准号:
    22306198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁泥碳、硫缺陷调控构建内电场驱动催化体系修复地下水PFAS的界面作用机制
  • 批准号:
    42307065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding and optimising ultrasound remediation of PFAS-contaminated soils and groundwater
了解和优化 PFAS 污染土壤和地下水的超声波修复
  • 批准号:
    2886427
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Studentship
Collaborative Research: Towards a Better Understanding of the Atmospheric Fate of PFAS
合作研究:更好地了解 PFAS 在大气中的归宿
  • 批准号:
    2220919
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards a Better Understanding of the Atmospheric Fate of PFAS
合作研究:更好地了解 PFAS 在大气中的归宿
  • 批准号:
    2220837
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards a Better Understanding of the Atmospheric Fate of PFAS
合作研究:更好地了解 PFAS 在大气中的归宿
  • 批准号:
    2220845
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Microbial encapsulation with porous polymer membrane for engineered microbial community
用于工程微生物群落的多孔聚合物膜微生物封装
  • 批准号:
    22K19865
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了