NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
基本信息
- 批准号:2400195
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis program in the Division of Chemistry, Professor Shannon Boettcher of University of Oregon, Eugene is studying the chemistry of catalytic materials for high-efficiency, low-cost generation of green hydrogen from electrically driven water splitting. This research is motivated in part by a grand challenge in the field known as the hydrogen shot, with the target of reaching the production of hydrogen fuel at $1 per 1 kg within one decade. Green hydrogen is obtained as the product of one-half of the overall water splitting reaction. The other half, water oxidation, limits the overall efficiency of hydrogen generation and must be accelerated by earth-abundant catalysts to improve rates and lower costs. Boettcher’s group has developed several catalysts based on nickel, iron, and cobalt with efficient water oxidation ability that are promising for hydrogen technologies. With this grant, his group will study with molecular precision the underlying chemical principles and structures that dictate the high performance of these catalysts and whether these chemical principles hold under industry-relevant conditions. This will be done by leveraging academic partnerships that facilitate rapid access to advanced surface characterization and computational techniques, and practical feedback from industrial collaborators. In addition to supporting work which will have a high impact on the field of catalysis, this grant will also provide key training to graduate and undergraduate students soon to enter the burgeoning renewable energy workforce, facilitate the continuation of educational outreach among students from the middle school to undergraduate level.Under this award, Professor Shannon Boettcher and his research team are studying fundamental chemical descriptors for advanced alkaline water-oxidation catalysts. Water oxidation is characterized by slow kinetics and represents a key constraint in the performance of large-scale hydrogen production through water electrolysis. This oxidation reaction typically occurs on the surface of heterogeneous oxides/oxyhydroxides that are poorly defined, which makes relating structural, compositional, and electronic features to observed activity difficult. Fundamental catalysis science discoveries can address these challenging relations and, importantly, translate learned principles into improved technology for alkaline hydrogen production. With this grant, Prof. Boettcher and his team are building a fundamental understanding of active-site generation, retention, and loss for record-activity earth-abundant Fe-Ni/Co oxyhydroxides. Specifically, they will (1) study how the structure and properties of newly proposed surface Fe-oxo cluster active sites drive high activity in these transition-metal oxyhydroxides; (2) develop chemical descriptors to explain surface restructuring and activation of crystalline oxides (vs. amorphous oxides) for the oxygen evolution reaction (OER); and (3) understand if and how dynamic catalyst surfaces and Fe-based active sites drive record OER catalysis in high-temperature concentrated electrolyte conditions. The work seeks to build a more complete, temperature-dependent, thermodynamic and kinetic understanding of the materials and surface processes central to water oxidation at industrially relevant conditions. These aims will be studied through a combination of computation and experiment, with a significant focus on experiments conducted under operating conditions. Collaborative computational efforts by Prof. Maytal Caspary-Toroker at the Technion in Haifa, Israel, funded separately by the U.S.-Israel Binational Science Foundation, is expected to provide new and more accurate approaches to modeling the thermodynamics and kinetic processes in these complex oxyhydroxides.This collaborative US/Israel project is supported by the US National Science Foundation and the Israel Binational Science Foundation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在俄勒冈大学化学系化学催化项目的支持下,尤金正在研究催化材料化学,以通过电驱动水分解高效、低成本地产生绿色氢气。其部分动机是氢弹领域的一项重大挑战,其目标是在十年内实现氢燃料产量为每 1 公斤 1 美元,绿色氢的产量占总量的一半。水另一半是水氧化,它限制了氢气生成的总体效率,必须通过地球上丰富的催化剂来加速,以提高速率并降低成本,Boettcher 的团队开发了几种基于镍、铁和钴的高效水催化剂。凭借这笔资助,他的团队将以分子精度研究决定这些催化剂高性能的基本化学原理和结构,以及这些化学原理在工业相关条件下是否成立。这将通过利用学术合作伙伴关系来实现,这些合作伙伴关系有助于快速获得先进的表面表征和计算技术,以及工业合作者的实际反馈。除了支持对催化领域产生重大影响的工作外,这笔赠款还将提供关键的支持。为研究生和本科生提供培训,使其很快进入新兴的可再生能源劳动力队伍,促进中学生到本科生的教育推广。在该奖项下,Shannon Boettcher 教授和他的研究团队正在研究先进碱性的基本化学描述符水氧化催化剂的特点是动力学缓慢,是水电解大规模制氢性能的一个关键制约因素。这种氧化反应通常发生在定义不明确的非均相氧化物/羟基氧化物的表面上。将结构、组成和电子特征与观察到的活性联系起来很困难,基础催化科学发现可以解决这些具有挑战性的关系,重要的是,可以将学到的原理转化为改进的碱性氢生产技术。在获得资助后,Boettcher 教授和他的团队正在对地球上丰富的活性位点 Fe-Ni/Co 羟基氧化物的活性位点生成、保留和损失有一个基本的了解。具体来说,他们将 (1) 研究其结构和性质。新提出的表面铁氧簇活性位点驱动这些过渡金属羟基氧化物的高活性;(2)开发化学描述符来解释晶体氧化物(与无定形氧化物)的表面重组和活化析氧反应(OER);(3)了解动态催化剂表面和铁基活性位点是否以及如何在高温浓缩电解质条件下驱动创纪录的 OER 催化。对工业相关条件下水氧化的材料和表面过程的动力学理解将通过计算和实验相结合的方式进行研究,重点关注梅塔尔教授在操作条件下进行的协作计算工作。以色列海法理工学院的 Caspary-Toroker 由美国-以色列两国科学基金会单独资助,预计将提供新的、更准确的方法来模拟这些复杂的羟基氧化物的热力学和动力学过程。这个美国/以色列合作项目是由美国国家科学基金会和以色列两国科学基金会支持。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,认为值得支持标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shannon Boettcher其他文献
Addressing the Challenge of Electrochemical Ionomer Oxidation in Future Anion Exchange Membrane Water Electrolyzers
应对未来阴离子交换膜水电解槽中电化学离聚物氧化的挑战
- DOI:
10.1021/acsenergylett.4c00832 - 发表时间:
2024-06-02 - 期刊:
- 影响因子:22
- 作者:
Jihoon Lim;J. M. Klein;Seung Geol Lee;Eun Joo Park;Sun Young Kang;S;ip Maurya;ip;W. Mustain;Shannon Boettcher;Y. Kim - 通讯作者:
Y. Kim
Shannon Boettcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shannon Boettcher', 18)}}的其他基金
Research Infrastructure: MRI: Track #1 Acquisition of a Next-Generation X-ray Photoelectron Spectrometer for Materials Research, Education, and Outreach
研究基础设施:MRI:追踪
- 批准号:
2320848 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
PFI-TT: Commercialization of advanced bipolar membranes for applications in water treatment, carbon-dioxide capture and utilization, and environmental remediation
PFI-TT:先进双极膜的商业化,用于水处理、二氧化碳捕获和利用以及环境修复
- 批准号:
2141201 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Interfacial Ionics
CCI 第一阶段:NSF 界面离子中心
- 批准号:
2221599 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
MRI: Acquisition of an Inductively Coupled Plasma-Mass Spectrometer for Quantitative Elemental Analysis of Natural and Engineered Materials
MRI:购买电感耦合等离子体质谱仪,用于天然和工程材料的定量元素分析
- 批准号:
2117614 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
GOALI: CAS: Oxygen Evolution Catalysts for Membrane Electrolysis: From Fundamentals to Applications
目标:CAS:膜电解析氧催化剂:从基础到应用
- 批准号:
1955106 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
GOALI: SusChem: Fundamentals of Oxygen Electrocatalysis on Mixed-Metal Oxyhydroxides for Alkaline Membrane Electrolysis
目标:SusChem:碱性膜电解混合金属羟基氧化物氧电催化基础知识
- 批准号:
1566348 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
GOALI / SusChEM: Structure-property relationships in metal-hydroxide oxygen-evolution electrocatalysts for alkaline-membrane-based water electrolysis
GOALI / SusChEM:用于碱膜水电解的金属氢氧化物析氧电催化剂的结构-性能关系
- 批准号:
1301461 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: Somatic cell adaptation towards immortalization in a marine tunicate
合作研究:NSF-BSF:海洋被囊动物体细胞对永生的适应
- 批准号:
2127516 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
NSF-BSF: Small: AF: Towards a Unified Theory of Spanners
NSF-BSF:小:AF:迈向扳手的统一理论
- 批准号:
2121952 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Somatic cell adaptation towards immortalization in a marine tunicate
合作研究:NSF-BSF:海洋被囊动物体细胞对永生的适应
- 批准号:
2127517 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF/MCB-BSF: Collaborative Research: Towards development of the structural determinants of the Glutamate receptor gating regulation by auxiliary membrane anchored proteins
NSF/MCB-BSF:合作研究:通过辅助膜锚定蛋白开发谷氨酸受体门控调节的结构决定因素
- 批准号:
1818086 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
NSF/MCB-BSF: Collaborative Research: Towards development of the structural determinants of the Glutamate receptor gating regulation by auxiliary membrane anchored proteins
NSF/MCB-BSF:合作研究:通过辅助膜锚定蛋白开发谷氨酸受体门控调节的结构决定因素
- 批准号:
1818213 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant