CAS:Improving the Activity of Homogeneous Mn Catalysts for the Oxygen Reduction Reaction

CAS:提高均相锰催化剂的氧还原反应活性

基本信息

  • 批准号:
    2348515
  • 负责人:
  • 金额:
    $ 48.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Charles W. Machan of the University of Virginia is studying the catalytic reduction of dioxygen by molecular manganese compounds. The reduction of dioxygen can be used for energy production from chemical bonds in devices such as fuel cells, where it is the preferred reaction to pair with the oxidation of chemical fuels to produce power. In order to make these systems deployable and scalable, it is essential to develop catalysts made from earth abundant materials. Although Mn is known to have strong interactions with dioxygen, catalysts made from this metal are relatively rare because effective strategies to accelerate catalysis based on Mn are underdeveloped. These studies on dioxygen reduction are aimed at developing design principles for better manganese catalysts, to achieve sufficient performance metrics to compete with other transition metals. An important part of these efforts is a research-focused educational outreach program to provide students with training in science communication. Kits will also be developed to provide research-based lab experience for undergraduates at all levels. The research goals under study and the educational components under development are addressing important priorities for society by meeting the growing needs for new energy technologies and familiarizing students with energy research at early career stages.Under this award, the Machan research team at the University of Virginia is studying the catalytic reduction of dioxygen by molecular manganese compounds. As an earth abundant transition metal that binds strongly to dioxygen, manganese has great potential to be an effective catalyst for dioxygen reduction. However, to achieve sufficient reaction rates, there is a need to develop strategies for destabilizing the intermediate species. This is an ongoing challenge, since far less is known about the use of manganese as a catalyst for dioxygen reduction than is known for approaches employing other transition metals. These research efforts will address this need by investigating how the primary environment of the manganese active site regulates dioxygen binding, how the transfer of substrate to the active site can be controlled to select for specific reduction products, and how the use of secondary metal ions can disrupt stable manganese dioxygen adducts to accelerate the observed reactions. Overall, these studies on manganese-based dioxygen reduction are evaluating the structure-function parameters that regulate the reaction pathways for the two possible reaction products: hydrogen peroxide and water. By improving the activity of manganese-based electrocatalysts through this iterative design strategy, these studies are addressing the ongoing need for the fundamental understanding of dioxygen reduction, which is required for better renewable energy utilization in the long term.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,弗吉尼亚大学的 Charles W. Machan 正在研究分子锰化合物催化还原双氧。分子氧的还原可用于通过燃料电池等装置中的化学键产生能量,在燃料电池中,它是与化学燃料的氧化配对以产生电力的首选反应。为了使这些系统可部署和可扩展,必须开发由地球丰富的材料制成的催化剂。尽管已知锰与分子氧具有很强的相互作用,但由这种金属制成的催化剂相对较少,因为基于锰的加速催化的有效策略尚未开发。这些关于分子氧还原的研究旨在开发更好的锰催化剂的设计原理,以获得足够的性能指标以与其他过渡金属竞争。这些努力的一个重要部分是一个以研究为中心的教育推广计划,为学生提供科学传播培训。 还将开发套件,为各级本科生提供基于研究的实验室经验。正在研究的研究目标和正在开发的教育部分正在通过满足对新能源技术日益增长的需求并使学生在职业生涯早期阶段熟悉能源研究来解决社会的重要优先事项。在该奖项下,弗吉尼亚大学的 Machan 研究团队正在研究分子锰化合物催化还原双氧。 作为地球上丰富的与分子氧牢固结合的过渡金属,锰具有成为分子氧还原的有效催化剂的巨大潜力。然而,为了达到足够的反应速率,需要制定使中间体不稳定的策略。这是一个持续的挑战,因为对使用锰作为分子氧还原催化剂的了解远远少于对使用其他过渡金属的方法的了解。这些研究工作将通过研究锰活性位点的主要环境如何调节双氧结合、如何控制底物到活性位点的转移以选择特定的还原产物以及如何使用二次金属离子来满足这一需求。破坏稳定的锰双氧加合物以加速观察到的反应。总的来说,这些关于锰基分子氧还原的研究正在评估调节两种可能的反应产物:过氧化氢和水的反应途径的结构功​​能参数。通过这种迭代设计策略提高锰基电催化剂的活性,这些研究正在解决对双氧还原的基本理解的持续需求,这是长期更好地利用可再生能源所必需的。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Machan其他文献

Molecular catalysts for artificial photosynthesis: general discussion
  • DOI:
    10.1039/c7fd90017a
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Mei Wang;Vincent Artero;Leif Hammarström;Jose Martinez;Joshua Karlsson;Devens Gust;Peter Summers;Charles Machan;Peter Brueggeller;Christopher D. Windle;Yosuke Kageshima;Richard Cogdell;Kristine Rodulfo Tolod;Alexander Kibler;Dogukan Hazar Apaydin;Etsuko Fujita;Johannes Ehrmaier;Seigo Shima;Elizabeth Gibson;Ferdi Karadas;Anthony Harriman;Haruo Inoue;Akihiko Kudo;Tomoaki Takayama;Michael Wasielewski;Flavia Cassiola;Masayuki Yagi;Hitoshi Ishida;Federico Franco;Sang Ook Kang;Daniel Nocera;Can Li;Fabio Di Fonzo;Hyunwoong Park;Licheng Sun;Tohru Setoyama;Young Soo Kang;Osamu Ishitani;Jian-Ren Shen;Ho-Jin Son;Shigeyuki Masaoka
  • 通讯作者:
    Shigeyuki Masaoka

Charles Machan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Machan', 18)}}的其他基金

CAS: Developing Homogeneous Mn Catalyst Systems for the Oxygen Reduction Reaction
CAS:开发用于氧还原反应的均相锰催化剂体系
  • 批准号:
    2102156
  • 财政年份:
    2021
  • 资助金额:
    $ 48.1万
  • 项目类别:
    Standard Grant

相似国自然基金

低强度聚焦超声调节前额叶神经活动改善小鼠社交障碍的作用与机制研究
  • 批准号:
    82202797
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑家庭活动制约的育龄青年通勤行为机理及改善对策研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
益气复脉制剂及活性成分干预NMMHCⅡA介导的内皮-心肌交联活动改善心衰的分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
rtfMRI-NF调控杏仁核活动改善失眠障碍的作用和机制
  • 批准号:
    82071884
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于无创检测信息探索体力活动对中学生慢性疲劳综合征的改善机制
  • 批准号:
    31871209
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Improving the activity of CAR T cells for acute myeloid leukemia
提高CAR T细胞治疗急性髓系白血病的活性
  • 批准号:
    10740585
  • 财政年份:
    2023
  • 资助金额:
    $ 48.1万
  • 项目类别:
Improving CAR T cell therapy for brain tumors using immune competent models
使用免疫活性模型改善脑肿瘤的 CAR T 细胞疗法
  • 批准号:
    10732795
  • 财政年份:
    2021
  • 资助金额:
    $ 48.1万
  • 项目类别:
Improving CAR T cell therapy for brain tumors using immune competent models
使用免疫活性模型改善脑肿瘤的 CAR T 细胞疗法
  • 批准号:
    10322192
  • 财政年份:
    2021
  • 资助金额:
    $ 48.1万
  • 项目类别:
Improving Ethics in Research Development of the Coercion Assessment Scale (CAS)
提高强制评估量表 (CAS) 研究开发的道德规范
  • 批准号:
    8212102
  • 财政年份:
    2010
  • 资助金额:
    $ 48.1万
  • 项目类别:
Improving Ethics in Research Development of the Coercion Assessment Scale (CAS)
提高强制评估量表 (CAS) 研究开发的道德规范
  • 批准号:
    8011963
  • 财政年份:
    2010
  • 资助金额:
    $ 48.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了