CAREER: Mathematical Modeling to Identify New Regulatory Mechanisms of Blood Clotting

职业:通过数学模型确定新的凝血调节机制

基本信息

项目摘要

This CAREER project will develop new mathematical models and numerical methods for simulating blood clotting and identifying regulatory mechanisms within the blood clotting system. In response to vessel injuries, blood will clot to prevent bleeding. The clotting response is complex and involves numerous biochemical and biophysical components working together under the influence of flow. Certain diseases or drugs may cause clots to form improperly, resulting in life-threatening bleeding or pathological clot growth with vessel occlusion. Due to the intricate biochemical and biophysical aspects of the clotting system, predicting its responses and identifying the regulatory mechanisms underlying these responses is difficult. Mathematical models of blood clotting provide powerful tools for designing new drugs, experiments, and patient-specific therapies, but there are still great challenges in formulating such models. This research focuses on developing new mathematical models of essential biochemical players and their involvement in complex biophysical processes. These models will be used to test hypotheses related to regulation of blood clotting and optimal drug design. Additionally, graduate students will be trained in interdisciplinary research and help to organize summer workshops in mathematical biology. The workshops will be offered to local community college students, with the goal being their recruitment and retention into four-year programs by offering active learning, faculty and graduate student mentoring, peer networking, and timely advising. This research will build a comprehensive modeling framework coupling the biochemistry, biophysics, and biomechanics of blood clotting. It will address mechanistic questions about regulating the generation and sequestration of thrombin, the most important enzyme in the clotting process. Specifically, the research will focus on (1) development of a mathematical model that accurately describes thrombin's binding to fibrin (the polymer that stabilizes growing blood clots) and explains the extended periods of time that thrombin has been observed to stay bound to fibrin under flow, (2) development of a mathematical model that incorporates a new, platelet-dependent mechanism to inhibit thrombin generation and explains observed inhibition under flow, and (3) development of a new numerical method to model platelets as discrete objects immersed in a fluid, interacting elastically, responding to molecules in the surrounding fluid, and carrying information via molecules bound to their surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业项目将开发新的数学模型和数值方法,用于模拟血液凝固并识别血液凝固系统内的调节机制。为了应对血管损伤,血液会凝结以防止出血。凝血反应很复杂,涉及许多生化和生物物理成分在血流的影响下协同工作。某些疾病或药物可能会导致血栓形成不当,导致危及生命的出血或病理性血栓生长并导致血管闭塞。由于凝血系统复杂的生化和生物物理方面,预测其反应并确定这些反应背后的调节机制是很困难的。血液凝固的数学模型为设计新药、实验和患者特异性疗法提供了强大的工具,但制定此类模型仍面临巨大挑战。这项研究的重点是开发重要生化参与者及其参与复杂生物物理过程的新数学模型。这些模型将用于测试与凝血调节和最佳药物设计相关的假设。此外,研究生将接受跨学科研究培训,并帮助组织数学生物学夏季研讨会。这些研讨会将向当地社区学院的学生提供,目的是通过提供主动学习、教师和研究生指导、同伴网络和及时建议来招募和保留他们进入四年制课程。这项研究将建立一个耦合血液凝固的生物化学、生物物理学和生物力学的综合建模框架。它将解决有关调节凝血酶(凝血过程中最重要的酶)的产生和隔离的机制问题。具体来说,该研究将集中于 (1) 开发一个数学模型,该模型准确描述凝血酶与纤维蛋白(稳定生长血栓的聚合物)的结合,并解释观察到凝血酶在流动下与纤维蛋白保持结合的较长时间,(2)开发了一种数学模型,该模型结合了一种新的血小板依赖性机制来抑制凝血酶生成并解释了在流动下观察到的抑制,以及(3)开发了一种新的数值方法,将血小板建模为浸入水中的离散物体一种流体,弹性相互作用,对周围流体中的分子做出反应,并通过与其表面结合的分子携带信息。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karin Leiderman其他文献

The Effect of Factor VIII Deficiencies and Replacement and Bypass Therapies on Thrombus Formation under Venous Flow Conditions in Microfluidic and Computational Models
微流体和计算模型中静脉血流条件下因子 VIII 缺乏以及替代和旁路疗法对血栓形成的影响
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    A. A. Onasoga;Karin Leiderman;A. Fogelson;Michael Wang;M. Manco‐Johnson;J. Di Paola;K. Neeves
  • 通讯作者:
    K. Neeves
The effects of spatial inhomogeneities on flow through the endothelial surface layer.
空间不均匀性对通过内皮表面层的流量的影响。
  • DOI:
    10.1016/j.jtbi.2008.01.013
  • 发表时间:
    2008-05-21
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Karin Leiderman;L. Miller;A. Fogelson
  • 通讯作者:
    A. Fogelson
A Microfluidic Model of Hemostasis Sensitive to Platelet Function and Coagulation
对血小板功能和凝血敏感的止血微流体模型
  • DOI:
    10.1007/s12195-016-0469-0
  • 发表时间:
    2016-10-24
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Rogier M. Schoeman;K. Rana;N. Danes;Marcus Lehmann;J. Paola;A. Fogelson;Karin Leiderman;Keith B. Neeves;Keith B. Neeves
  • 通讯作者:
    Keith B. Neeves
Mixing and pumping by pairs of helices in a viscous fluid.
在粘性流体中通过成对螺旋进行混合和泵送。
  • DOI:
    10.1103/physreve.97.023101
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Buchmann;L. Fauci;Karin Leiderman;E. Strawbridge;Longhua Zhao
  • 通讯作者:
    Longhua Zhao
Mathematical Models of Hemostasis
止血的数学模型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Neeves;Karin Leiderman
  • 通讯作者:
    Karin Leiderman

Karin Leiderman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karin Leiderman', 18)}}的其他基金

CAREER: Mathematical Modeling to Identify New Regulatory Mechanisms of Blood Clotting
职业:通过数学模型确定新的凝血调节机制
  • 批准号:
    1848221
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Computational Models of Cilia and Flagella in a Brinkman Fluid
合作研究:Brinkman 流体中纤毛和鞭毛的计算模型
  • 批准号:
    1743962
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Models of Cilia and Flagella in a Brinkman Fluid
合作研究:Brinkman 流体中纤毛和鞭毛的计算模型
  • 批准号:
    1743962
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Models of Cilia and Flagella in a Brinkman Fluid
合作研究:Brinkman 流体中纤毛和鞭毛的计算模型
  • 批准号:
    1413078
  • 财政年份:
    2014
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant

相似国自然基金

磁流体力学中的磁抑制现象的数学理论研究
  • 批准号:
    12371233
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中国工业与应用数学学会第二十一届年会(CSIAM 2023)
  • 批准号:
    12342003
  • 批准年份:
    2023
  • 资助金额:
    15 万元
  • 项目类别:
    专项基金项目
多模态数学问题理解和类人解答方法研究
  • 批准号:
    62376012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
流体及耦合流体方程组的数学理论
  • 批准号:
    12331007
  • 批准年份:
    2023
  • 资助金额:
    193 万元
  • 项目类别:
    重点项目
电磁双曲超材料的数学理论与数值模拟
  • 批准号:
    12301539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
  • 批准号:
    2414705
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
Simulation Academy at Yale: Youth Entering Science (SAY-YES!)
耶鲁大学模拟学院:青年进入科学(说是!)
  • 批准号:
    10663646
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了