CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles

职业:从第一原理了解熔盐中的电化学金属萃取

基本信息

  • 批准号:
    2340765
  • 负责人:
  • 金额:
    $ 58.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

The CAREER project addresses a critical climate change challenge: developing environmentally friendly methods for producing and recycling key metals such as nickel and cobalt, essential for clean energy technologies. As society shifts from fossil fuels to electric energy, increasing battery, electrolyzer, and fuel cell production is vital. This project contributes by investigating clean, electricity-powered metal extraction processes in molten salts by combining atomic-scale computer simulations with machine learning and data science. These computational tools will enable precise modeling of process steps, offering insights beyond experimental capabilities. This includes understanding mineral dissolution in molten salts and how electrolyte composition impacts energy needs for metal extraction, which is essential for effective process design. Besides advancing scientific research methods, clean electrolytic metal extraction processes promise substantial benefits for national health, prosperity, and welfare by advancing clean energy solutions and reducing fossil fuel dependency and, thereby, their detrimental impacts on health and the environment. Unlike conventional mining processes, clean electrolytic processes can be implemented domestically, reducing the reliance on international supply chains and, thus, enhancing national defense and economic stability. Additionally, the project establishes an annual winter school focusing on data science in electrochemical energy, targeting high-school seniors and undergraduates, especially from underrepresented minorities. This initiative advances education at the intersection of data/computational science and chemical engineering and raises awareness about the global impact of critical materials and sustainable energy practices, contributing to a diverse STEM pipeline.This project adopts a novel approach to studying high-temperature mineral electrolysis in molten salts, a crucial yet under-researched class of processes for clean metal extraction for metal production and recovery from electronics waste. It aims to understand key steps in molten-salt electrolysis through tailored modeling approaches: Electronic density-functional theory for atomic/electronic-scale properties that control redox potentials, first-principles surface-phase diagrams for surface/interfacial effects relevant for dissolution, and both ab initio molecular dynamics (MD) simulations and MD simulations based on machine-learning interatomic potentials for transport properties and solvation. An unsupervised learning approach is used to analyze trajectories from large-scale MD simulations, and computational predictions will be validated against experimental data from collaborators. This comprehensive study seeks to develop benchmarked methods and models for designing molten-salt electrolysis processes, with an initial focus on cobalt and nickel minerals relevant to lithium-ion batteries. These advances in computational process design and implementation have broad applications in computational chemical engineering and materials science, marking progress in integrating first principles theory with data science. Moreover, the project has significant broader impacts. It aids the transition to a clean energy economy by providing new degrees of freedom for the rational design of clean metal extraction processes that are needed for the electrification of industry and to overcome supply-chain challenges. Educationally, it integrates data science in chemical engineering and materials science, preparing students for interdisciplinary manufacturing challenges and fostering workforce development in a key yet underserved sector.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
CAREER 项目应对气候变化的严峻挑战:开发环保方法来生产和回收镍和钴等关键金属,这对清洁能源技术至关重要。随着社会从化石燃料转向电能,增加电池、电解槽和燃料电池的产量至关重要。该项目通过将原子级计算机模拟与机器学习和数据科学相结合,研究熔盐中清洁的电力金属提取过程。这些计算工具将实现过程步骤的精确建模,提供超出实验能力的见解。这包括了解熔盐中的矿物溶解以及电解质成分如何影响金属提取的能源需求,这对于有效的工艺设计至关重要。除了先进的科学研究方法之外,清洁电解金属提取工艺还通过推进清洁能源解决方案和减少对化石燃料的依赖,从而减少对健康和环境的有害影响,为国民健康、繁荣和福利带来巨大利益。与传统采矿工艺不同,清洁电解工艺可以在国内实施,减少对国际供应链的依赖,从而增强国防和经济稳定。此外,该项目还建立了一所年度冬季学校,重点关注电化学能源数据科学,针对高中生和本科生,特别是代表性不足的少数族裔。该计划推进了数据/计算科学和化学工程交叉领域的教育,提高了人们对关键材料和可持续能源实践的全球影响的认识,为多样化的 STEM 管道做出了贡献。该项目采用了一种新颖的方法来研究高温矿物电解在熔盐中,这是一类重要但尚未充分研究的工艺,用于金属生产和电子废物回收的清洁金属提取。它旨在通过定制的建模方法了解熔盐电解的关键步骤:控制氧化还原电位的原子/电子尺度特性的电子密度泛函理论、与溶解相关的表面/界面效应的第一原理表面相图,以及从头算分子动力学 (MD) 模拟和基于机器学习原子间势的输运特性和溶剂化的 MD 模拟。无监督学习方法用于分析大规模 MD 模拟的轨迹,计算预测将根据合作者的实验数据进行验证。这项综合研究旨在开发设计熔盐电解工艺的基准方法和模型,最初重点关注与锂离子电池相关的钴和镍矿物。计算过程设计和实现方面的这些进步在计算化学工程和材料科学中具有广泛的应用,标志着第一性原理理论与数据科学相结合的进展。此外,该项目还具有更广泛的影响。它为工业电气化和克服供应链挑战所需的清洁金属提取工艺的合理设计提供了新的自由度,有助于向清洁能源经济的过渡。在教育方面,它将数据科学融入化学工程和材料科学中,帮助学生做好应对跨学科制造挑战的准备,并促进关键但服务不足的领域的劳动力发展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Urban其他文献

Inverse Synthetic Aperture Secondary Radar Concept for Precise Wireless Positioning
用于精确无线定位的逆合成孔径二次雷达概念
Understanding how off-stoichiometry promotes cation mixing in LiNiO$_2$
了解非化学计量如何促进 LiNiO$_2$ 中的阳离子混合
  • DOI:
  • 发表时间:
    2024-01-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cem Komurcuoglu;Yunhao Xiao;Xinhao Li;Joaquin Rodriguez;Zheng Li;Alan C. West;Alexander Urban
  • 通讯作者:
    Alexander Urban
First-principles characterization of surface degradation of LiNiO2 cathodes
LiNiO2 正极表面降解的第一性原理表征
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinhao Li;Qian Wang;Haoyue Guo;Nongnuch Artrith;Alexander Urban
  • 通讯作者:
    Alexander Urban
Atomic Insights into the Oxidative Degradation Mechanisms of Sulfide Solid Electrolytes
硫化物固体电解质氧化降解机制的原子洞察
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuntian Cao;Matthew R. Carbone;Cem Komurcuoglu;Jagriti S. Shekhawat;Kerry Sun;Haoyue Guo;Sizhan Liu;Ke Chen;Seong;Yonghua Du;Conan Weiland;Xiao Tong;Dan Steingart;Shinjae Yoo;Nongnuch Artrith;Alexander Urban;Deyu Lu;Feng Wang
  • 通讯作者:
    Feng Wang
Clinical and personal utility of genomic high-throughput technologies: perspectives of medical professionals and affected persons
基因组高通量技术的临床和个人效用:医疗专业人员和受影响人群的观点
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Urban;M. Schweda
  • 通讯作者:
    M. Schweda

Alexander Urban的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Urban', 18)}}的其他基金

Collaborative Research: C1: Learning the Universal Free Energy Function
合作研究:C1:学习通用自由能函数
  • 批准号:
    1940290
  • 财政年份:
    2020
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Standard Grant

相似国自然基金

面向智能化仿真社会实验的具身人物视觉理解与身份构建
  • 批准号:
    62302296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
  • 批准号:
    62302093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
油菜雄性不育恢复基因BnaMs3抑制不育基因Bnams4b毒害的分子机理解析
  • 批准号:
    32372178
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SlHSD2调控番茄果实角质层发育的机理解析
  • 批准号:
    32302571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
山葡萄VaZFHD4-VaNAC26模块调控茉莉酸合成应答干旱胁迫的分子机理解析
  • 批准号:
    32302517
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding degradation mechanisms in sustainable energy electrochemical systems using advanced characterization approaches
职业:使用先进的表征方法了解可持续能源电化学系统的降解机制
  • 批准号:
    2046060
  • 财政年份:
    2021
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Continuing Grant
CAREER: Understanding the electrochemical properties of physical hole defects on functionalized B/C 2D materials for the 2e- reduction of O2 to H2O2
职业:了解功能化 B/C 2D 材料上物理孔缺陷的电化学特性,用于将 O2 2e 还原为 H2O2
  • 批准号:
    2048278
  • 财政年份:
    2021
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Ion Transport in Solvated Layered Oxides for Electrochemical Energy Storage
职业:了解用于电化学储能的溶剂化层状氧化物中的离子传输
  • 批准号:
    1653827
  • 财政年份:
    2017
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Utilization of Electrochemical Processes for Iontronic Applications
职业:理解和利用离子电子应用的电化学过程
  • 批准号:
    1057209
  • 财政年份:
    2011
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Continuing Grant
CAREER: Electrochemical Ceramics - Understanding the Gap between Localized and Collective Viewpoints of Electronic Structure
职业:电化学陶瓷 - 了解电子结构的局部观点和集体观点之间的差距
  • 批准号:
    0222002
  • 财政年份:
    2002
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了