CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications

职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用

基本信息

  • 批准号:
    2340631
  • 负责人:
  • 金额:
    $ 44.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

Networked Interacting Dynamical Systems (NetIDs) are ubiquitous, displaying complex behaviors that arise from the interactions of agents or particles. These systems have found applications in diverse fields, including ecology, engineering, and social sciences, yet their high-dimensional nature makes them challenging to study. This often leads to significant theoretical and computational difficulties, known as the “curse of dimensionality.” Recent advances in applied mathematics have shed light on these complexities, revealing that complex NetID patterns can arise from low dimensional interactions. Building on these insights, this project is dedicated to developing a theoretical and computational framework to address the estimation problems within these models by exploiting the underlying low dimensional structures. The overarching goal is to create efficient, physically interpretable surrogate models that bridge the gap between qualitative analysis and quantitative data-driven applications, ranging from sensor network optimization to modeling the environmental and climate impacts on fish migration. This research program will provide research opportunities for both undergraduate and graduate students, featuring a graduate summer school at the intersection of NetIDs and machine learning. There will be a particular focus on engaging female and underrepresented minority students in this vibrant field, blending machine learning with differential equations. The project's findings will also enrich mathematical data science course materials for both undergraduate and graduate education.This project aims to make fundamental mathematical, statistical, and computational advances for solving NetIDs' estimation problems. The research will focus on three primary areas: (1) Developing innovative sampling strategies for optimal data recovery in NetIDs with linear interactions by exploiting their inherent low-dimensionality in terms of sparsity, smoothness, low-rankness. (2) Establishing robust statistical estimation of NetIDs with nonlinear time-varying interactions by combining machine learning, numerical analysis, and functional data analysis to create physically consistent estimators that bypass the “curse of dimensionality,” while exploring the identifiability and convergence as sample sizes increase. (3) Investigating the statistical predictive properties of Graph Neural Differential Equations, aiming to derive upper bounds for their transferability and generalization error. The results of this project are expected to address the computational challenges of large-scale Graph Neural Networks and bridge theory and practice in NetIDs research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络交互动力系统 (NetID) 无处不在,显示出由代理或粒子相互作用产生的复杂行为,这些系统已在生态学、工程和社会科学等多个领域得到应用,但其高维性质使其具有挑战性。这通常会导致重大的理论和计算困难,即所谓的“维数灾难”。应用数学的最​​新进展揭示了这些复杂性,揭示了复杂的 NetID 模式可能源自低维交互。这些见解,该项目致力于开发一个理论和计算框架,通过利用底层的低维结构来解决这些模型中的估计问题。总体目标是创建有效的、物理上可解释的替代模型,以弥合定性分析和分析之间的差距。该研究项目将为定量本科生和研究生提供研究机会,其中包括 NetID 和机器学习交叉领域的研究生暑期学校。将特别注重参与该项目的研究结果还将丰富本科生和研究生教育的数学数据科学课程材料。该项目旨在推动数学基础、统计和计算方面的进步,以解决这一问题。 NetID 的估计问题将集中在三个主要领域:(1)通过利用其固有的稀疏性、平滑性和低秩性等低维性,开发创新的采样策略,以实现具有线性交互的 NetID 的最佳数据恢复。 (2) 通过结合机器学习、数值分析和功能数据分析,建立具有非线性时变交互作用的 NetID 的稳健统计估计,创建物理一致的估计器,绕过“维数灾难”,同时探索样本大小的可识别性和收敛性(3) 研究图神经微分方程的统计预测特性,旨在推导其可传递性和泛化误差的上限。该项目的结果有望解决以下问题的计算挑战。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sui Tang其他文献

Sensor Calibration for Off-the-Grid Spectral Estimation
用于离网频谱估计的传感器校准
  • DOI:
    10.1016/j.acha.2018.08.003
  • 发表时间:
    2017-07-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yonina C. Eldar;Wenjing Liao;Sui Tang
  • 通讯作者:
    Sui Tang
System identification in dynamical sampling
动态采样中的系统辨识
Learning interaction kernels in heterogeneous systems of agents from multiple trajectories
从多个轨迹学习异构代理系统中的交互内核
  • DOI:
    10.1016/j.camwa.2022.02.004
  • 发表时间:
    2019-10-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Lu;M. Maggioni;Sui Tang
  • 通讯作者:
    Sui Tang
Learning theory for inferring interaction kernels in second-order interacting agent systems
推断二阶交互代理系统中交互核的学习理论
Data-Driven Model Selections of Second-Order Particle Dynamics via Integrating Gaussian Processes with Low-Dimensional Interacting Structures
通过将高斯过程与低维相互作用结构集成来选择二阶粒子动力学的数据驱动模型
  • DOI:
    10.48550/arxiv.2311.00902
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinchao Feng;Charles Kulick;Sui Tang
  • 通讯作者:
    Sui Tang

Sui Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sui Tang', 18)}}的其他基金

Data-Driven Discovery of Dynamics in Interacting Agent Systems and Linear Diffusion Processes
交互代理系统和线性扩散过程中的数据驱动动力学发现
  • 批准号:
    2111303
  • 财政年份:
    2021
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant

相似国自然基金

从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计算机辅助的协作问题解决中情感-社交-认知建模分析与引导促进
  • 批准号:
    62377027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
蛋白质降解决定因子的生物信息学筛选及其耐药突变的多组学分析研究
  • 批准号:
    32300528
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
  • 批准号:
    82371986
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于MOFs材料解决钙钛矿太阳电池中铅泄漏问题的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Controlling the Contents of Working Memory
控制工作记忆的内容
  • 批准号:
    10735630
  • 财政年份:
    2023
  • 资助金额:
    $ 44.94万
  • 项目类别:
Transport transforms for biomedical data modeling, estimation, and classification
用于生物医学数据建模、估计和分类的传输转换
  • 批准号:
    10672626
  • 财政年份:
    2019
  • 资助金额:
    $ 44.94万
  • 项目类别:
Human-scale Game Solving through Estimation While Learning
通过边学习边估计来解决人类规模的游戏
  • 批准号:
    475487-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Human-scale Game Solving through Estimation While Learning
通过边学习边估计来解决人类规模的游戏
  • 批准号:
    475487-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Human-scale Game Solving through Estimation While Learning
通过边学习边估计来解决人类规模的游戏
  • 批准号:
    475487-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了