CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
基本信息
- 批准号:2340273
- 负责人:
- 金额:$ 56.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Estimating Power, Performance, and Area (PPA) earlier in the electronic design automation (EDA) flow would improve the Quality of Results (QoR) and reliability in chip design. The classical analytical or heuristic methods can be challenging to fine-tune, especially for complex problems. Machine learning (ML) methods have proven to be effective in addressing these problems. Graph Neural Networks (GNNs) have gained popularity since they are among the most natural ways to represent the fundamental objects in the EDA flow. However, with increased design complexity and chip capacity, an increasing performance gap exists between the extremely large graphs in EDA and the insufficient support from general-purpose hardware, such as mainstream graphics processing units (GPUs). This project aims to expedite the large graph machine learning on various EDA tasks, through a full-fledged development of efficient and scalable computing paradigms. This project's novelties are EDA domain knowledge-aware graph machine learning, training acceleration, and algorithm-hardware co-design and optimization. The project's broader significance and importance include: (1) to advance the field of machine learning in chip design, highlighted in National Artificial Intelligence Initiative; (2) to deepen the understanding of interactions among EDA domain knowledge, graph learning, and GPU acceleration; (3) to enrich the computer engineering curriculum and promote participation from undergraduates, underrepresented groups, and K-12 students in STEM fields through relevant programs.The project will develop a design paradigm for efficient, scalable and practical algorithm-hardware co-optimized solutions to significantly accelerate large graph machine learning on EDA tasks using a single GPU. This project consists of three coherent research thrusts: (1) to develop an algorithm-hardware co-optimized paradigm, focusing on restudying EDA graph features, introducing partitioning and selective re-growth methods, and tailoring GPU kernels for unified graph machine learning on EDA tasks using a single GPU; (2) to speed up single GPU for large circuit Graph Neural Network (GNN) training by implementing a tiled reversible architecture for low-memory training, and designing a maxK nonlinearity function to reduce computation costs; (3) to jointly integrate EDA domain knowledge, graph learning, and hardware optimizations to co-search for the appropriate hardware primitives and GNN compression strategies, as well as closely leverage the unique properties of circuit graphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在电子设计自动化 (EDA) 流程中尽早估算功耗、性能和面积 (PPA) 将提高芯片设计的结果质量 (QoR) 和可靠性。经典的分析或启发式方法很难进行微调,尤其是对于复杂的问题。机器学习(ML)方法已被证明可以有效解决这些问题。图神经网络 (GNN) 越来越受欢迎,因为它们是表示 EDA 流程中基本对象的最自然方式之一。然而,随着设计复杂度和芯片容量的增加,EDA中巨大的图形与主流图形处理单元(GPU)等通用硬件的支持不足之间存在着越来越大的性能差距。该项目旨在通过高效且可扩展的计算范例的全面开发,加速各种 EDA 任务的大型图机器学习。该项目的新颖之处在于EDA领域知识感知图机器学习、训练加速以及算法-硬件协同设计和优化。该项目更广泛的意义和重要性包括:(1)推进国家人工智能计划中强调的芯片设计中的机器学习领域; (2)加深对EDA领域知识、图学习和GPU加速之间相互作用的理解; (3) 通过相关项目丰富计算机工程课程,促进本科生、弱势群体和 K-12 学生在 STEM 领域的参与。该项目将开发高效、可扩展和实用的算法-硬件协同优化解决方案的设计范式使用单个 GPU 显着加速 EDA 任务上的大型图机器学习。该项目由三个连贯的研究重点组成:(1)开发算法-硬件协同优化范式,重点是重新研究 EDA 图特征,引入分区和选择性再生长方法,以及定制 GPU 内核以实现 EDA 上的统一图机器学习使用单个 GPU 的任务; (2) 通过实现低内存训练的平铺可逆架构,并设计 maxK 非线性函数来降低计算成本,加速大型电路图神经网络 (GNN) 训练的单 GPU 速度; (3)共同整合EDA领域知识、图学习和硬件优化,共同寻找合适的硬件原语和GNN压缩策略,并紧密利用电路图的独特属性。该奖项反映了NSF的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caiwen Ding其他文献
Deep Learning Tackles Temporal Predictions on Charging Loads of Electric Vehicles
深度学习解决电动汽车充电负载的时间预测
- DOI:
10.1109/ecce50734.2022.9947901 - 发表时间:
2022-10-09 - 期刊:
- 影响因子:0
- 作者:
Eugenia Cadete;Raul Alva;Albert Zhang;Caiwen Ding;Mimi Xie;Sara Ahmed;Yufang Jin - 通讯作者:
Yufang Jin
Surrogate Lagrangian Relaxation: A Path to Retrain-Free Deep Neural Network Pruning
代理拉格朗日松弛:无重新训练深度神经网络修剪的途径
- DOI:
10.1145/3624476 - 发表时间:
2023-04-08 - 期刊:
- 影响因子:1.4
- 作者:
Shangli Zhou;Mikhail A. Bragin;Lynn Pepin;Deniz Gurevin;Fei Miao;Caiwen Ding - 通讯作者:
Caiwen Ding
Learning Topics Using Semantic Locality
使用语义局部性学习主题
- DOI:
10.1109/icpr.2018.8546223 - 发表时间:
2018-04-11 - 期刊:
- 影响因子:0
- 作者:
Ziyi Zhao;Krittaphat Pugdeethosapol;Sheng Lin;Zhe Li;Caiwen Ding;Yanzhi Wang;Qinru Qiu - 通讯作者:
Qinru Qiu
Ising-CF: A Pathbreaking Collaborative Filtering Method Through Efficient Ising Machine Learning
Ising-CF:通过高效 Ising 机器学习实现的开创性协同过滤方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhuo Liu;Yunan Yang;Zhenyu Pan;Anshujit Sharma;Amit Hasan;Caiwen Ding;Ang Li;Michael Huang;Tong Geng - 通讯作者:
Tong Geng
Efficient Traffic State Forecasting using Spatio-Temporal Network Dependencies: A Sparse Graph Neural Network Approach
使用时空网络依赖性的高效交通状态预测:稀疏图神经网络方法
- DOI:
10.48550/arxiv.2211.03033 - 发表时间:
2022-11-06 - 期刊:
- 影响因子:0
- 作者:
Bin Lei;Shaoyi Huang;Caiwen Ding;Monika Filipovska - 通讯作者:
Monika Filipovska
Caiwen Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caiwen Ding', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247893 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant
相似国自然基金
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大规模多目标整数优化问题的图神经网络求解算法研究及FPGA硬件实现
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
LDPC码高性能、低复杂度ADMM译码算法及硬件实现研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向分组密码算法硬件防护的智能侧信道分析方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 56.07万 - 项目类别:
Standard Grant
Real-Time Federated Learning at the Wireless Edge via Algorithm-Hardware Co-Design
通过算法-硬件协同设计在无线边缘进行实时联合学习
- 批准号:
EP/X019160/1 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247892 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2312366 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247891 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant