CAREER: Resilient Engineering Systems Design Via Early-Stage Bio-Inspiration

职业:通过早期生物灵感进行弹性工程系统设计

基本信息

项目摘要

Resilience is critical for engineering systems, but comprehensive methods and widely accepted guidelines tailored specifically for incorporating resilience in the early stages of system design are lacking. This Faculty Early Career Development Program (CAREER) award supports research which aims to address these gaps by working at the intersection of bio-inspired design, systems engineering, and engineering design to establish quantitative tools for addressing system resilience when minimal information is available. Biological ecosystem characteristics will be investigated for their ability to guide system designers in the early design stages towards better response and recovery, including situations involving targeted and/or random disturbances. Ultimately, the project will develop knowledge and methods to ensure that human systems can withstand disturbances – especially important for the critical infrastructure systems that supply our water, power, or medicines – by safeguarding against potential failures and costly downtime. Collaborative feedback from ecologists, industry, and academic experts will ensure that the interdisciplinary work maintains each domain’s critical features. Additional deliverables from this project include a “Walk Like an Engineer” program, which engages participants of all ages and abilities in engineering inspiration scavenger hunts through local parks, led by both a bio-inspired engineering design expert and a Nature Center host. The themed nature walks, which will focus on topics such as ‘Nature’s Systems’ and ‘Nature’s Resilience’, will encourage participants to see themselves as design engineers learning from nature. The program will advance the United States future workforce by nurturing interdisciplinary communication skills and early interest and excitement in STEM-based design, while also teaching the public about nature and engineering in a connected manner. This project supports the long-term goal of enhancing the early integration of resilience into the system design process, allowing designers to make proactive choices to create more sustainable and resilient systems that can withstand disruptions and recover effectively. The research objectives of this project are to provide quantitative tools for assessment of biological inspiration in engineering system design, extend the use of effective bio-inspiration into system recovery, and formulate practical design tools for achieving system resilience from biological ecosystem principles found to be effective. Ecological Network Analysis will provide a quantitative method for extracting desirable traits from resilient biological ecosystems (e.g., food webs) and applying them to human engineered systems. Of interest is how these traits can improve a system’s robustness and recovery, which will be tested using a variety of case study types and criticality levels, including supply chains, water distribution networks, power grids, and industrial resource networks. The most beneficial biological systems traits will be further investigated to generate fundamental engineering principles, such as the impact of topology versus weights on nature’s systems characteristics. A study of targeted versus random disturbances will provide additional insight into where these biological systems characteristics have the most value for engineering designers seeking system-level resilience. The project’s research objectives are integrated and enhanced by the project’s educational objectives: to create and foster engineering excitement before students typically self-exclude from STEM; teach the public about how nature and engineering can be connected; and create STEM access for and inclusion of students with intellectual and developmental disabilities. Evaluation of the educational outreach activities will also provide important documentation for the use of nature to increase interest in engineering at all ages, as well as in underrepresented and underserved groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
弹性对于工程系统至关重要,但缺乏专门为将弹性纳入系统设计早期阶段而定制的综合方法和广泛接受的指南,该学院早期职业发展计划(CAREER)奖项支持旨在通过工作来解决这些差距的研究。生物启发设计、系统工程和工程设计的交叉点,以建立定量工具,以在可用信息最少的情况下解决系统弹性问题。将研究生物生态系统特征,以了解它们在早期设计阶段指导系统设计人员更好地响应和实现的能力。恢复,包括涉及有针对性和/或随机的情况最终,该项目将开发知识和方法,通过防止潜在的故障和代价高昂的停机时间,确保人类系统能够承受干扰——对于供应水、电力或药品的关键基础设施系统尤其重要。 、行业和学术专家将确保跨学科工作保持每个领域的关键特征,该项目的其他成果包括“像工程师一样行走”计划,该计划让所有年龄段和能力的参与者参与工程灵感寻宝游戏。当地公园由仿生工程设计专家和自然中心主持人领导,主题自然漫步将重点关注“自然系统”和“自然弹性”等主题,鼓励参与者将自己视为设计工程师。该项目将通过培养跨学科的沟通技巧以及对基于 STEM 的设计的早期兴趣和兴奋,同时以相互关联的方式向公众传授自然和工程知识,从而促进美国未来的劳动力发展。增强目标早期将弹性融入系统设计过程中,使设计人员能够做出主动选择,创建更可持续、更有弹性的系统,能够抵御破坏并有效恢复。该项目的研究目标是为评估工程系统中的生物灵感提供定量工具。设计,将有效的生物灵感扩展到系统恢复中,并根据被发现有效的生物生态系统原理制定实用的设计工具,以实现系统的恢复力。 生态网络分析将为从恢复力强的生物生态系统中提取所需的特征提供定量方法。 ,食物网)并应用它们令人感兴趣的是这些特征如何提高系统的稳健性和恢复能力,这将使用各种案例研究类型和关键级别进行测试,包括供应链、供水网络、电网和工业资源网络。将进一步研究最有益的生物系统特征,以产生基本的工程原理,例如拓扑与权重对自然系统特征的影响,对目标干扰与随机干扰的研究将为这些生物系统特征最有价值的地方提供更多见解。适合寻求系统级的工程设计师该项目的研究目标与该项目的教育目标相结合并得到加强:在学生通常自我排除在 STEM 之外之前,创造和培养对工程的兴趣;教导公众如何将自然与工程联系起来,并创造 STEM 的机会和包容性;对有智力和发育障碍的学生的教育推广活动的评估也将为利用自然来提高各个年龄段以及代表性不足和服务不足的群体对工程的兴趣提供重要的文件。该奖项反映了 NSF 的法定使命,并已被认为值得通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Astrid Layton其他文献

Extending Ecological Network Analysis to Design Resilient Cyber-Physical System of Systems
扩展生态网络分析以设计弹性网络物理系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abheek Chatterjee;Hao Huang;Richard Malak;Katherine R. Davis;Astrid Layton
  • 通讯作者:
    Astrid Layton
Makerspace Network Analysis for Identifying Student Demographic Usage 6th International Symposium on Academic Makerspaces
用于识别学生人口统计用途的创客空间网络分析第六届学术创客空间国际研讨会
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Blair;Garrett Hairston;Henry A. Banks;J. Linsey;Astrid Layton
  • 通讯作者:
    Astrid Layton
Bio-Inspired and AI DeepWalk Based Approach to Understand Cyber-Physical Interdependencies of Power Grid Infrastructure
基于仿生和人工智能 DeepWalk 的方法来理解电网基础设施的网络物理相互依赖性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shining Sun;Emily Payne;Astrid Layton;Katherine R. Davis;S. Hossain‐McKenzie;N. Jacobs
  • 通讯作者:
    N. Jacobs
Toward Resilient Modern Power Systems: From Single-Domain to Cross-Domain Resilience Enhancement
迈向弹性现代电力系统:从单域到跨域弹性增强
  • DOI:
    10.1109/jproc.2024.3405709
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Hao Huang;H. Vincent Poor;Katherine R. Davis;Thomas J. Overbye;Astrid Layton;Ana E. Goulart;Saman Zonouz
  • 通讯作者:
    Saman Zonouz
Bio‐inspired human network diagnostics: Ecological modularity and nestedness as quantitative indicators of human engineered network function
  • DOI:
    10.1002/sys.21756
  • 发表时间:
    2024-04-03
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Samuel Blair;Garrett Hairston;Henry Banks;Claire Kaat;Julie Linsey;Astrid Layton
  • 通讯作者:
    Astrid Layton

Astrid Layton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Astrid Layton', 18)}}的其他基金

Benchmarking and Improving Makerspaces Using Quantitative Network Analysis
使用定量网络分析对创客空间进行基准测试和改进
  • 批准号:
    2013547
  • 财政年份:
    2020
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Standard Grant

相似国自然基金

延缓背有大负载行走时下肢肌肉疲劳的智能弹性背包研究
  • 批准号:
    51805237
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
可拉伸、有弹性、高导电材料的制备研究
  • 批准号:
    21104014
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
有弹性基础的层状夹芯复合材料热机械力学行为
  • 批准号:
    10642003
  • 批准年份:
    2006
  • 资助金额:
    12.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Conference: Nature-based Solutions for Resilient Communities: Preparing Students to Address Grand Challenges in Ecological Engineering
会议:基于自然的弹性社区解决方案:帮助学生做好应对生态工程重大挑战的准备
  • 批准号:
    2309583
  • 财政年份:
    2023
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Standard Grant
Resilient EMS PSLL: Using a Systems Engineering Approach to Enhance EMS Cognitive Work and Safety for Older Adults During Prehospital Care.
弹性 EMS PSLL:使用系统工程方法来增强院前护理期间老年人的 EMS 认知工作和安全。
  • 批准号:
    10769353
  • 财政年份:
    2023
  • 资助金额:
    $ 54.02万
  • 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Standard Grant
Engineering Resilient Community Pharmacies (ENRICH)
工程弹性社区药房 (ENRICH)
  • 批准号:
    10768139
  • 财政年份:
    2023
  • 资助金额:
    $ 54.02万
  • 项目类别:
Engineering Resilient Swarm Robotics Systems
工程弹性群体机器人系统
  • 批准号:
    RGPIN-2019-05165
  • 财政年份:
    2022
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了