CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows

职业:边界层流的湍流求解积分模拟

基本信息

  • 批准号:
    2340121
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2028-12-31
  • 项目状态:
    未结题

项目摘要

Turbulence plays a key physical role in a wide variety of boundary layer flows related to energy, transportation, and national security. As such, improving simulation capabilities for boundary layer turbulence holds the key to accelerating engineering design, optimization, and certification while reducing associated costs. Example applications include the modeling the impact of turbulence on aerodynamic forces on airplanes or wind turbine blades, and the intense aerodynamic heating of hypersonic vehicles. Despite enormous advances in supercomputer performance, direct simulations of these and other similarly important flows, using only the basic laws of physics, are typically either impractical or completely infeasible. This difficulty is due to the extremely high computational requirements associated with wide range of sizes that turbulent eddying motions can have. As a result, innovative approximation methods are required to create practical simulation tools by reducing computational cost without sacrificing too much accuracy. This project introduces a new simulation framework based on the direct resolution of the largest, most influential turbulent motions within a two-dimensional representation of the flow. The method will be developed first for low-speed flows before extending it to tackle challenges related to boundary layers on hypersonic vehicles. From a technical perspective, the development of a potentially transformative simulation framework can impact a wide variety of applications related to society’s most pressing challenges. Innovative educational activities within and outside the classroom will be integrated with the research activities of the project.The overarching goal of the project is to introduce and develop turbulence resolving integral simulations for computing turbulent boundary layer dynamics. While integral-based methods have been well established for use with boundary layers, existing approaches are based on averaged equations. The proposed simulation framework will break new ground by considering integral-based simulations that directly resolve large and very-large scale motions in a two-dimensional description of the turbulent boundary layer. After establishing the basic competence of the approach, particular attention will be given to scenarios for which existing modeling techniques have greater difficulty, including boundary layers subjected to non-zero freestream pressure gradients and hypersonic boundary layers with high-enthalpy effects. In evaluating the success of the new simulation method, particular attention will be given to the trade-off between physical fidelity and computational efficiency. Integrated educational activities will form a multi-pronged effort to broaden the undergraduate-to-graduate pipeline and improve student readiness for graduate school and competence in scientific computing for fluid dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流在与能源、交通和国家安全相关的各种边界层流中发挥着关键的物理作用,因此,提高边界层湍流的模拟能力是加快工程设计、优化和认证同时降低相关成本的关键。示例应用包括模拟湍流对飞机或风力涡轮机叶片的空气动力的影响,以及高超音速飞行器的强烈空气动力加热,尽管超级计算机性能取得了巨大进步,但仍可以直接模拟这些流动和其他类似的重要流动。仅使用基本物理定律通常是不切实际或完全不可行的,这种困难是由于与湍流涡流运动可能具有的各种尺寸相关的极高的计算要求,因此需要创新的近似方法来创建。该项目引入了一种新的模拟框架,该框架基于直接解析流动的二维表示中最大、最有影响力的湍流运动。该方法将首先针对低速流动开发,然后将其扩展到解决与高超音速飞行器边界层相关的挑战。从技术角度来看,潜在变革性模拟框架的开发可以影响与社会最紧迫挑战相关的各种应用。课堂内外的创新教育活动将与该项目的研究活动相结合。该项目的总体目标是引入和开发用于计算湍流边界层动力学的湍流解析积分模拟,同时基于积分的方法已经成熟。对于边界层的使用,现有的方法基于平均方程,通过考虑基于积分的模拟,直接解决湍流边界层的二维描述中的大尺度和超大规模运动,将开辟新的领域。在建立该方法的基本能力后,将特别关注现有建模技术具有较大难度的场景,包括承受非零自由流压力梯度的边界层和具有高焓效应的高超声速边界层。新模拟的方法中,将特别关注物理保真度和计算效率之间的权衡,综合教育活动将形成多管齐下的努力,以拓宽本科生到研究生的渠道,提高学生进入研究生院的准备和科学计算的能力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Perry Johnson其他文献

Potential Therapeutic Improvements in Prostate Cancer Treatment Using Pencil Beam Scanning Proton Therapy with LETd Optimization and Disease-Specific RBE Models
使用笔形束扫描质子疗法结合 LETd 优化和疾病特异性 RBE 模型对前列腺癌治疗的潜在治疗改进
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Michael Vieceli;Jiyeon Park;Wen Chien Hsi;Mo Saki;N. Mendenhall;Perry Johnson;M. Artz
  • 通讯作者:
    M. Artz

Perry Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Perry Johnson', 18)}}的其他基金

Physics-inspired Coarsening for Turbulent Flow Simulations
用于湍流模拟的物理启发粗化
  • 批准号:
    2152373
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

高湍流度条件下波形前缘风力机叶片的动态失速机理调控研究
  • 批准号:
    12372289
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
磁场对称性对等离子体流、湍流及输运垒的影响研究
  • 批准号:
    12311540010
  • 批准年份:
    2023
  • 资助金额:
    19 万元
  • 项目类别:
    国际(地区)合作与交流项目
湍流大气信道下轨道角动量编码量子密钥分发的态依赖衍射及自适应光学校正
  • 批准号:
    62301530
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融入湍流生消演变机理的台风快速增强预报技术研究
  • 批准号:
    42375002
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
氨氢多组分输运对湍流火焰形态与传播的影响机制研究
  • 批准号:
    52306126
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Resolving shock heating, turbulence and baryon cycle in high redshift massive galaxies
解决高红移大质量星系中的激波加热、湍流和重子循环
  • 批准号:
    2116203
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Physics-based Scale Enrichment for Eddy-Resolving Turbulence Simulations
用于涡旋分辨湍流模拟的基于物理的尺度丰富
  • 批准号:
    1803378
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Resolving the Structure of Turbulence in Rough Wall Channel Flows Using 3D, Time Resolved, Multiscale Velocity Measurements
使用 3D、时间分辨、多尺度速度测量来解析粗糙壁通道流中的湍流结构
  • 批准号:
    1438203
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Resolving Turbulence-Chemistry Interaction Using Novel Laser Diagnostics
职业:使用新型激光诊断解决湍流化学相互作用
  • 批准号:
    1156564
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了