CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis

职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论

基本信息

  • 批准号:
    2339693
  • 负责人:
  • 金额:
    $ 68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

The transformation of carbon dioxide (CO2) to fuels and chemicals using CO2 electrolyzers is a promising path forward for the electrification of the chemical manufacturing industry and the manufacturing of synthetic fuels for energy storage at a global scale. CO2 electrolyzers powered by electrons generated from wind and solar are key enabling technologies to achieve a zero-emissions future. Among the various metals studied for the electrochemical transformation of CO2, copper is the only single-element metal known to efficiently catalyze the production of multi-carbon oxygenates and hydrocarbons. There is still no consensus on how copper catalyzes this transformation. The rational design of future large-scale CO2 electrolyzers requires information on thermodynamics and reaction-transport kinetics. This project will address the research need of insufficient information on the reaction-transport kinetics on the copper catalyst system. This project will integrate results from research efforts into the training of undergraduate and graduate students at UCLA while also coordinating outreach activities to community colleges, minority serving institutions, national labs, and industries in California. The education and broadening impact activities include: i) development of a two year-summer research experience for chemical engineering undergraduate students. ii) outreach to industry and involvement of a diverse group of undergraduate and graduate students in research workshops and collaborations, and iii) introduction of electrochemical engineering concepts, cells, and theories developed in this proposal in the undergraduate chemical engineering capstone course, and the electrochemical processes course taught by the PI. Recently, it has become evident that transport is on equal footing with intrinsic catalytic kinetics of copper active sites in determining reaction mechanisms and product distributions of CO2 electroreductions, and thus a detailed extraction of reaction kinetics under well-defined mass, heat and charge transport conditions is necessary. This fundamental engineering research project addresses the critical need for the determination and modeling of mesoscopic transport and reaction kinetics relevant to CO2 electrocatalysis by combining: i) reactor design and characterization, ii) accelerated collection, ingestion, and contextualization of large experimental datasets to enable the decoupling of transport contributions from CO2 reduction kinetics, and iii) the development and parametrization of multi-scale reaction-transport models. The reaction-transport model developed here will be the first of its kind for electrochemical CO2 reduction and should enable the future rational design and scale-up of CO2 electrolyzers. The research will explore how mass, heat and charge transport determine product selectivity in CO2 reduction and will develop the fundamental theory and tools needed to build a reaction-transport model of electrocatalytic processes on copper electrodes. Electrochemical cells with well-defined transport properties will be utilized as tools to generate large experimental datasets of correlations between six experimental variables (applied potential, transport characteristics in the cell, electrolyte composition, temperature, pressure and catalyst porosity) and the production rates for 16 different liquid and gas products on copper catalysts. This large dataset will be of high quality and will be used to determine the underlying CO2 reduction mechanism on copper electrodes and the contribution of external and internal mass, heat and charge transport effects on the generation of different product distributions observed on catalysts with different porosities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用二氧化碳电解槽将二氧化碳(CO2)转化为燃料和化学品是全球范围内化学制造业电气化和储能合成燃料制造的一条有前途的道路。由风能和太阳能产生的电子驱动的二氧化碳电解槽是实现零排放未来的关键技术。在研究用于二氧化碳电化学转化的各种金属中,铜是唯一已知能够有效催化多碳含氧物和碳氢化合物生产的单元素金属。关于铜如何催化这种转变尚未达成共识。未来大型二氧化碳电解槽的合理设计需要热力学和反应传递动力学的信息。该项目将解决铜催化剂体系反应-传输动力学信息不足的研究需求。该项目将把研究成果整合到加州大学洛杉矶分校本科生和研究生的培训中,同时协调加州社区学院、少数族裔服务机构、国家实验室和行业的外展活动。教育和扩大影响的活动包括:i)为化学工程本科生提供两年的夏季研究经验。 ii) 向行业推广以及让不同的本科生和研究生群体参与研究研讨会和合作,以及 iii) 在本科生化学工程顶点课程中介绍电化学工程概念、电池和本提案中开发的理论,以及电化学由 PI 教授的流程课程。最近,很明显,在确定 CO2 电还原的反应机制和产物分布时,传输与铜活性位点的固有催化动力学处于同等地位,因此可以在明确的质量、热和电荷传输条件下详细提取反应动力学是必要的。该基础工程研究项目通过结合以下方法解决了与 CO2 电催化相关的介观输运和反应动力学的确定和建模的关键需求:i) 反应器设计和表征,ii) 加速大型实验数据集的收集、摄取和背景化,以实现运输贡献与二氧化碳还原动力学的解耦,以及 iii) 多尺度反应运输模型的开发和参数化。这里开发的反应-传输模型将是电化学二氧化碳还原的第一个模型,并且应该能够实现未来二氧化碳电解槽的合理设计和规模化。该研究将探索质量、热量和电荷传输如何决定二氧化碳还原中的产物选择性,并将开发建立铜电极上电催化过程的反应传输模型所需的基本理论和工具。具有明确传输特性的电化学电池将被用作生成六个实验变量(施加的电位、电池传输特性、电解质成分、温度、压力和催化剂孔隙率)和 16 个实验变量之间相关性的大型实验数据集的工具。铜催化剂上不同的液体和气体产物。这个大型数据集将具有高质量,并将用于确定铜电极上潜在的二氧化碳还原机制,以及外部和内部质量、热量和电荷传输效应对在不同孔隙率的催化剂上观察到的不同产物分布的生成的贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Morales-Guio其他文献

Carlos Morales-Guio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

PKM2-SREBP调控光感受器-RPE糖脂代谢耦联对话在实验性近视模型中的机制研究
  • 批准号:
    82301240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
m6A去甲基化酶Fto在实验性氟中毒突触可塑性损伤中的保护作用与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
ATF-3/AP-1转录因子介导IL-10+调节性B细胞分化抑制实验性口腔黏膜界面炎的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
实验性自身免疫性脑脊髓炎中巨噬细胞调节骨髓造血的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
  • 批准号:
    10911713
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
MARC at University of California Riverside
加州大学河滨分校 MARC
  • 批准号:
    10629831
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
Core 2: Biospecimen, Metabolomics, and Pathology Core
核心 2:生物样本、代谢组学和病理学核心
  • 批准号:
    10711640
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
Augmenting cancer checkpoint immunotherapies via microbially-derived metabolites
通过微生物衍生的代谢物增强癌症检查点免疫疗法
  • 批准号:
    10506732
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
Impacts of the Pennsylvania Rural Health Model on Health Care Access and Utilization
宾夕法尼亚州农村卫生模式对医疗保健获取和利用的影响
  • 批准号:
    10818023
  • 财政年份:
    2023
  • 资助金额:
    $ 68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了