CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
基本信息
- 批准号:2339254
- 负责人:
- 金额:$ 61.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYBuilding 3D structures outside the body that mimic biological tissue is critical for studying how cells interact with each other in their native environment, and for understanding how these processes change in disease. Utilizing printable bioink materials combined with cells, 3D bioprinting offers an unprecedented ability to build cell-containing 3D structures that replicate the complex multicellular patterns and geometries of native tissue. A key approach to studying these cell interactions is by introducing new genetic material to cells to change their behavior in a defined way and controlling when and where the cells receive these genetic instructions. However, it is challenging to achieve this control in 3D printed structures using current approaches, as the 3D construct presents a physical barrier to gene delivery. Addressing this challenge, this project will develop a new 3D printable bioink that allows deep-penetrating ultrasound to trigger the delivery of genetic material to cells. The ultrasound waves can be focused to small spots within the 3D bioprinted structure to create desired patterns of gene delivery by activating embedded ultrasound-responsive particles. This project will produce new fundamental knowledge about how embedded ultrasound-responsive particles affect the material properties of the printable bioinks and will determine how bioink material properties affect ultrasound-induced particle activation. These novel materials will allow researchers to study new aspects of cell behavior in tissue-relevant 3D geometries. This project will also enable new materials for use in regenerative medicine applications where remote genetic manipulation of cells at specific times after implantation can instruct cellular communication and improve healing of damaged tissue. This project will develop educational activities that engage underrepresented students at multiple levels in 3D bioprinting and responsive biomaterials research, providing mentorship opportunities and fostering retention in STEM. Broader reach of this work will also be facilitated through development of interactive workshops to introduce 3D printing research to middle and high school students, as well as accessible 3D biofabrication modules to promote public interest in bioprinting and responsive biomaterials.TECHNICAL SUMMARY3D bioprinting is a major advance allowing direct formation of cell scaffold structures that closely mimic the multi-component architecture of native tissues. However, it is a challenge to apply the critically important tool of genetic manipulation to influence cell behaviors within 3D scaffolds with temporal and spatial control because scaffolds hinder diffusion of traditional transfection vectors. Overcoming diffusional barriers to enable genetic control over subsets of cells within scaffolds is essential for developing new biomaterials to replicate and perturb genetic expression patterns found in native tissue. This project focuses on fundamental development and characterization of a new class of biomaterials that combine a novel ultrasound-responsive 3D scaffold cell culture platform with 3D-printable bioinks to enable remote spatiotemporal control over genetic manipulation of embedded cells. The three main objectives are to: (1) understand how embedded ultrasound-responsive particles affect scaffold material properties, (2) determine how bioink material properties affect ultrasound-induced particle cavitation, and (3) characterize ultrasound-patterned DNA delivery to cells within multicellular 3D-bioprinted scaffolds. Multi-level integrated education activities will create research and mentoring opportunities for underrepresented undergraduate and graduate students in new stimuli-responsive bioink research, supporting student engagement and retention. Outreach and education efforts will also include interactive activities to introduce 3D printing technology to students at the middle and high school level, and dissemination of accessible 3D biofabrication education modules as a resource to increase public knowledge and interest in biomaterials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要在体外构建模仿生物组织的 3D 结构对于研究细胞在其天然环境中如何相互作用以及了解这些过程在疾病中如何变化至关重要。利用可打印生物墨水材料与细胞相结合,3D 生物打印提供了前所未有的能力来构建包含细胞的 3D 结构,复制天然组织的复杂多细胞图案和几何形状。研究这些细胞相互作用的一个关键方法是向细胞引入新的遗传物质,以特定的方式改变它们的行为,并控制细胞接收这些遗传指令的时间和地点。然而,使用当前方法在 3D 打印结构中实现这种控制具有挑战性,因为 3D 结构对基因传递存在物理障碍。为了应对这一挑战,该项目将开发一种新的 3D 打印生物墨水,允许深穿透超声波触发将遗传物质输送到细胞。超声波可以聚焦到 3D 生物打印结构内的小点,通过激活嵌入的超声波响应颗粒来创建所需的基因传递模式。该项目将产生关于嵌入式超声响应颗粒如何影响可打印生物墨水的材料特性的新基础知识,并将确定生物墨水材料特性如何影响超声诱导的颗粒激活。这些新型材料将使研究人员能够研究组织相关 3D 几何结构中细胞行为的新方面。该项目还将使新材料能够用于再生医学应用,其中在植入后的特定时间对细胞进行远程基因操作可以指导细胞通信并改善受损组织的愈合。该项目将开展教育活动,吸引多个级别的代表性不足的学生参与 3D 生物打印和响应式生物材料研究,提供指导机会并促进 STEM 的保留。还将通过举办互动研讨会向初中生和高中生介绍 3D 打印研究,以及可使用的 3D 生物制造模块来促进公众对生物打印和响应性生物材料的兴趣,从而促进这项工作的更广泛影响。 技术摘要 3D 生物打印是一项重大进步允许直接形成紧密模仿天然组织的多组分结构的细胞支架结构。然而,应用至关重要的基因操作工具通过时间和空间控制来影响 3D 支架内的细胞行为是一个挑战,因为支架阻碍了传统转染载体的扩散。克服扩散障碍以实现对支架内细胞亚群的遗传控制对于开发新的生物材料来复制和扰乱天然组织中发现的遗传表达模式至关重要。该项目重点关注新型生物材料的基础开发和表征,该生物材料将新型超声响应 3D 支架细胞培养平台与 3D 打印生物墨水相结合,从而能够对嵌入细胞的基因操作进行远程时空控制。三个主要目标是:(1) 了解嵌入的超声响应颗粒如何影响支架材料特性,(2) 确定生物墨水材料特性如何影响超声诱导的颗粒空化,以及 (3) 表征超声图案化 DNA 向细胞内的传递多细胞3D生物打印支架。多层次的综合教育活动将为新的刺激响应生物墨水研究中代表性不足的本科生和研究生创造研究和指导机会,支持学生的参与和保留。外展和教育工作还将包括向初中和高中学生介绍 3D 打印技术的互动活动,以及传播可访问的 3D 生物制造教育模块,作为增加公众对生物材料的知识和兴趣的资源。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Ibsen其他文献
Carolyn Ibsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
耦合度量发展方程的映射流及其爆破分析
- 批准号:12371061
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
HMGA2通过重塑肺癌特异性染色质空间互作环路调控肺癌发生发展的机制研究
- 批准号:82303072
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铁过载诱导ESCs外泌的mtDNA通过调控中性粒细胞内IFI16/STING/STIM1信号轴介导NETs形成促进子宫内膜异位症的发生发展
- 批准号:82371654
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Themis分子在自身免疫病发生发展中的作用和机制研究
- 批准号:32370956
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基础学科拔尖学生发展及其影响机制的追踪研究
- 批准号:72304231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing FAIR practices for cloud-enabled AI deployment for prospective testing
为基于云的人工智能部署制定公平实践以进行前瞻性测试
- 批准号:
10827803 - 财政年份:2023
- 资助金额:
$ 61.55万 - 项目类别:
Developing and Automating an Extracellular Vesicle-Based Test for Early Detection of Hepatocellular Carcinoma
开发和自动化基于细胞外囊泡的测试以早期检测肝细胞癌
- 批准号:
10823687 - 财政年份:2023
- 资助金额:
$ 61.55万 - 项目类别:
Developing imaging nanoprobes to advance prognosis of kidney fibrosis
开发成像纳米探针以改善肾纤维化的预后
- 批准号:
10574964 - 财政年份:2023
- 资助金额:
$ 61.55万 - 项目类别:
Developing a High-Flow Acoustofluidic Loading Platform for Research Cell Stabilization in the Anhydrous State
开发用于研究细胞在无水状态下稳定的高流量声流体加载平台
- 批准号:
10603701 - 财政年份:2023
- 资助金额:
$ 61.55万 - 项目类别:
A novel method for transient and repeatable axonal tracing in developing marmosets
一种在狨猴发育过程中进行瞬时和可重复轴突追踪的新方法
- 批准号:
10526658 - 财政年份:2022
- 资助金额:
$ 61.55万 - 项目类别: