CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
基本信息
- 批准号:2339162
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the post COVID-19 era, the medical community is increasingly adopting remote healthcare as an alternative to conventional medicine. Wirelessly-connected biomedical devices are an indispensable part of such remote healthcare solutions. With the increased longevity of patients, the long-term reliability of the wireless transceivers used in biomedical devices is becoming a concern. Furthermore, the sensitive nature of personalized healthcare raises concerns about the data security. This CAREER project will study the security threats and failure mechanisms in radio frequency integrated circuits (RFIC) and develop intelligent, low-energy analog solutions so as to create a trusted wireless transceiver with the capability to detect and cure impairments. The proposed research in this CAREER project will fundamentally change the remote healthcare solutions by developing a new class of miniaturized self-healing and trusted wireless transceivers that can provide high-speed connectivity at the device level. Moreover, this project enhances the foundational knowledge in hardware security by introducing novel low-energy analog encryption techniques for use in secure data communications. The education plan in this project will significantly enhance the knowledge of students in communications and hardware security. Through collaboration with industry, students will have the opportunity to work with industrial mentors and gain practical knowledge in electronics. The plan also contains initiatives focused on STEM education in K-12. As part of this effort, summer workshops on secure electronics and data communications will be offered to local high school students and their teachers, followed by design competitions to inspire the students, particularly those from underrepresented groups and minorities, to seek post-secondary education in STEM related fields. Lab visits and boot camps will also be organized as part of outreach activities to share resources and facilitate the knowledge transfer to teachers and students.The goal of this CAREER project is to develop intelligent, self-healing and trusted wireless transceivers by introducing low-energy analog asymmetric encryption and adaptive self-healing. The proposed research consist of two research thrust areas: (1) low-energy trusted data communications with smart threat detection capability, and (2) intelligent self-healing. Both research thrusts benefit from energy-efficient analog neural networks (ANNs) to improve the functionality. Applying innovative asymmetric analog encryption on the modulated waveforms in the wireless transceiver, an energy-efficient end-to-end encrypted wireless communication link is created. The proposed design will use scalable linear time-invariant (LTI) to generate the keys needed for encryption and decryption. A low-energy ANN will monitor the transceiver parameters for any sign of potential attack and notify the encryption engine accordingly. The transceiver will also be authenticated using low-overhead device fingerprinting techniques. Similarly, a low-energy adaptive analog self-healing unit will be developed to increase the reliability by detecting the performance degradation and abnormalities, and actively adjust the transceiver parameters. The self-healing unit uses an innovative dual-loop adaptive structure. The first loop is built within the analog front-end (AFE) and is always engaged to monitor short-term performance degradations while the second loop relies on a low-energy ANN and samples the data selectively to correct for long-term defects. The ANNs used in both research thrusts are built using energy-efficient spiking neural networks (SNNs) and are co-designed to reduce the delay and area overhead. The outcome of this CAREER project will enhance the remote healthcare by accelerating the adoption of smart personalized solutions in medical community, particularly for long-term treatment of chronic diseases. It will also lay the foundation of a smart, self-healing and trusted electronic platform for biomedical applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在后 COVID-19 时代,医学界越来越多地采用远程医疗保健作为传统医学的替代方案。无线连接的生物医学设备是此类远程医疗解决方案不可或缺的一部分。随着患者寿命的延长,生物医学设备中使用的无线收发器的长期可靠性正成为一个问题。此外,个性化医疗保健的敏感性引起了人们对数据安全的担忧。该职业项目将研究射频集成电路(RFIC)中的安全威胁和故障机制,并开发智能、低能耗模拟解决方案,以创建具有检测和修复损伤能力的值得信赖的无线收发器。该职业项目中提出的研究将从根本上改变远程医疗解决方案,通过开发一种新型小型化自愈和可信无线收发器,可以在设备级别提供高速连接。此外,该项目通过引入用于安全数据通信的新型低能耗模拟加密技术,增强了硬件安全的基础知识。该项目的教育计划将显着增强学生在通信和硬件安全方面的知识。通过与行业合作,学生将有机会与行业导师合作并获得电子领域的实用知识。该计划还包含针对 K-12 年级 STEM 教育的举措。作为这项努力的一部分,将为当地高中生及其老师举办有关安全电子和数据通信的夏季讲习班,随后举办设计竞赛,以激励学生,特别是来自代表性不足的群体和少数民族的学生,寻求高等教育STEM 相关领域。作为外展活动的一部分,还将组织实验室参观和训练营,以共享资源并促进向教师和学生的知识转移。该职业项目的目标是通过引入低能耗来开发智能、自愈和可信的无线收发器模拟非对称加密和自适应自我修复。拟议的研究包括两个研究重点领域:(1)具有智能威胁检测能力的低能耗可信数据通信,以及(2)智能自我修复。这两个研究重点都受益于节能模拟神经网络(ANN)来改进功能。对无线收发器中的调制波形应用创新的非对称模拟加密,创建节能的端到端加密无线通信链路。所提出的设计将使用可扩展的线性时不变(LTI)来生成加密和解密所需的密钥。低能量人工神经网络将监视收发器参数是否有任何潜在攻击的迹象,并相应地通知加密引擎。收发器还将使用低开销的设备指纹技术进行身份验证。同样,将开发低能耗自适应模拟自愈单元,通过检测性能下降和异常来提高可靠性,并主动调整收发器参数。自愈单元采用创新的双环自适应结构。第一个循环构建在模拟前端 (AFE) 内,始终致力于监控短期性能下降,而第二个循环则依赖于低能量 ANN 并有选择地对数据进行采样以纠正长期缺陷。这两个研究重点中使用的 ANN 均使用节能尖峰神经网络 (SNN) 构建,并经过共同设计以减少延迟和面积开销。该 CAREER 项目的成果将通过加速医疗界采用智能个性化解决方案来增强远程医疗保健,特别是慢性病的长期治疗。它还将为生物医学应用的智能、自我修复和可信电子平台奠定基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hossein Lavasani其他文献
Hossein Lavasani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hossein Lavasani', 18)}}的其他基金
EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
- 批准号:
2221925 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:
2029407 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
- 批准号:72303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
- 批准号:22303102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
- 批准号:62367003
- 批准年份:2023
- 资助金额:29 万元
- 项目类别:地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
- 批准号:82304384
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
知识型员工与人工智能合作中的管理挑战:信任难题、责任难题与技术框架
- 批准号:72302217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
- 批准号:
10112272 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
SME Support
NeuReader: Eye Tracking Enabled Explainable-AI for Empowering Resource Scarce Neurological Healthcare in Pakistan
NeuReader:眼动追踪支持可解释人工智能,为巴基斯坦资源稀缺的神经医疗保健提供支持
- 批准号:
EP/Y002865/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: AI-enabled Integrated Nutrient, Streamflow, and Parcel sImulation for Resilient agroEcosystems (INSPIRE): a framework for climate-smart crop production and cleaner water
职业:基于人工智能的弹性农业生态系统综合养分、水流和地块模拟 (INSPIRE):气候智能型作物生产和清洁水的框架
- 批准号:
2338563 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant