CAREER: Towards 3D Omnidirectional and Efficient Wireless Power Transfer with Controlled 2D Near-Field Coil Array

职业:利用受控 2D 近场线圈阵列实现 3D 全向高效无线功率传输

基本信息

  • 批准号:
    2338697
  • 负责人:
  • 金额:
    $ 50.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

Wireless power transfer (WPT) technology, like wireless communications now dominating end-user applications, is poised to take over many of the wired power deliveries today. However, one of the major limitations that prevents wider adoption of WPT is its stringent orientation and alignment requirements in existing implementations. Current efforts from both academia and industry resulted in either 3-dimensional (3D) multi-coil structures that are too bulky for most applications or 2-dimentional (2D) planar coil arrays that only addressed misalignment issues while leaving the orientation issue unresolved. The goal of this CAREER project is to achieve efficient omnidirectional WPT systems with new spatial calibration methodologies that can dynamically shape the magnetic field direction to match the orientation of the receiver device for optimum power transfer without using a bulky 3D structure. By addressing this major challenge of WPT, this project will benefit a wide range of applications, from low-power implantable or ingestible medical devices with orientation/location uncertainties inside the body to higher-power consumer electronics, without the need for careful orientation and position alignment with the wireless transmitter, revealing the full potential of wireless power technology. In terms of education, this project will provide undergraduate students with chip-level design experience, opportunities to interact with industry professionals on practical applications, and new courses. These education activities will bridge gaps between university education and industry needs with better training of students to address the nationwide workforce demand in industry. The outreach activities in close collaboration with various organizations will also help develop a more diverse STEM workforce by increasing the participation of students from underrepresented minority groups and providing them with more opportunities to obtain the knowledge and skills to pursue career goals as engineers or scientists.To achieve 3D omnidirectional WPT without using bulky 3D structures, a controlled 2D near-field coil array will be developed to shape the magnetic field with real-time spatial calibration techniques to determine and generate the optimal phases and amplitudes driving the coils in the array. Three system-level approaches will be explored for different application scenarios with different constraints, namely: 1) Receiver Backward Excitation, which is inspired by the theory of reciprocity in classical electromagnetism to sense the receiver-driven signals in reverse to pick up potentially optimum driving signals at the transmitter; 2) Transmitter Forward Excitation, to analyze the reflected impedance by sensing the transmitter-driven voltages and currents, and then calculate the optimum driving parameters; 3) Feedback Guided Searching, by optimizing the search space and then utilize feedback signals from the receiver to search for optimal driving parameters. In addition, a pseudo-2D approach with thin-film receiver structure will also be developed when the transmitter does not have the flexibility to implement a planar multi-coil array. In each approach, theoretical analysis and hardware development of system-level topologies, chip-level integrated circuits, and closed-loop control techniques will be performed for prototyping and measurement. To improve system efficiency, adaptive optimizations of coils and resonant links and development of nonlinear power and voltage regulation techniques will be performed with measurement verifications. The successful completion of this CAREER project will enable wider adoption of WPT, trigger innovations, open new trends for omnidirectional wireless powered applications, and generate broad impacts in our society.This project is jointly funded by the Communications, Circuits and Sensing Systems (CCSS) Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线功率传输 (WPT) 技术,就像现在主导最终用户应用的无线通信一样,即将取代当今的许多有线功率传输。然而,阻碍 WPT 更广泛采用的主要限制之一是其在现有实施中的严格定位和一致性要求。目前学术界和工业界的努力导致了对于大多数应用而言过于庞大的 3 维 (3D) 多线圈结构或仅解决了未对准问题而未解决方向问题的 2 维 (2D) 平面线圈阵列。该 CAREER 项目的目标是通过新的空间校准方法实现高效的全向 WPT 系统,该方法可以动态调整磁场方向以匹配接收器设备的方向,从而在不使用笨重的 3D 结构的情况下实现最佳功率传输。通过解决 WPT 的这一重大挑战,该项目将使广泛的应用受益,从体内方向/位置不确定的低功耗可植入或可摄入医疗设备到更高功率的消费电子产品,而无需仔细定位和定位与无线发射器对齐,揭示无线电源技术的全部潜力。在教育方面,该项目将为本科生提供芯片级设计经验、与行业专业人士就实际应用进行互动的机会以及新课程。这些教育活动将弥合大学教育与行业需求之间的差距,更好地培训学生,以满足全国工业劳动力的需求。与各组织密切合作的外展活动还将通过增加来自代表性不足的少数群体的学生的参与,并为他们提供更多机会获得知识和技能来追求工程师或科学家的职业目标,从而帮助培养更加多元化的 STEM 劳动力队伍。为了在不使用庞大的 3D 结构的情况下实现 3D 全向 WPT,将开发受控的 2D 近场线圈阵列,通过实时空间校准技术来塑造磁场,以确定并生成驱动阵列中线圈的最佳相位和振幅。针对具有不同约束的不同应用场景,将探索三种系统级方法,即: 1)接收器反向激励,其受到经典电磁学互易理论的启发,反向感测接收器驱动信号以获取潜在的最佳驱动发射机处的信号; 2)发射器正向激励,通过感测发射器驱动电压和电流来分析反射阻抗,然后计算最佳驱动参数; 3)反馈引导搜索,通过优化搜索空间,然后利用来自接收器的反馈信号来搜索最佳驱动参数。此外,当发射器不具备实现平面多线圈阵列的灵活性时,还将开发具有薄膜接收器结构的伪2D方法。在每种方法中,都将进行系统级拓扑、芯片级集成电​​路和闭环控制技术的理论分析和硬件开发,以进行原型设计和测量。为了提高系统效率,线圈和谐振链路的自适应优化以及非线性功率和电压调节技术的开发将通过测量验证进行。该CAREER项目的成功完成将使WPT得到更广泛的采用,引发创新,开启全向无线供电应用的新趋势,并在我们的社会中产生广泛的影响。该项目由通信、电路和传感系统(CCSS)联合资助计划和刺激竞争性研究的既定计划 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheng Huang其他文献

A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks
基于机器学习的框架,用于识别复杂网络中有影响力的节点
  • DOI:
    10.1109/access.2020.2984286
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Gouheng Zhao;Peng Jia;Cheng Huang;Anmin Zhou;Yong Fang
  • 通讯作者:
    Yong Fang
Liquid-Liquid interfacial approach for rapid synthesis of Well-Crystalline Two-Dimensional Metal-Organic frameworks for nitro reduction
用于快速合成用于硝基还原的良好结晶二维金属有机框架的液-液界面方法
  • DOI:
    10.1016/j.cej.2024.149969
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Jian Yang;Lulu Kong;Cheng Huang;Chongchong Wang;Shaohua Wei;Lin Zhou
  • 通讯作者:
    Lin Zhou
Association of circulating miR-155 expression level and inflammatory markers with white coat hypertension
循环miR-​​155表达水平和炎症标志物与白大衣高血压的关联
  • DOI:
    10.1038/s41371-019-0250-7
  • 发表时间:
    2019-09-03
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yu;Cheng Huang;Bin Zhang;Ying
  • 通讯作者:
    Ying
Histone deacetylase‐mediated silencing of PSTPIP2 expression contributes to aristolochic acid nephropathy‐induced PANoptosis
组蛋白脱乙酰酶介导的 PSTPIP2 表达沉默导致马兜铃酸肾病诱导的 PANoptosis
  • DOI:
    10.1111/bph.16299
  • 发表时间:
    2023-12-10
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Chuanting Xu;Qi Wang;C. Du;Jiahui Dong;Zhenming Zhang;Na Cai;Jun Li;Cheng Huang;Taotao Ma
  • 通讯作者:
    Taotao Ma
Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice
Bavachinin 作为一种新型天然泛 PPAR 激动剂,与合成 PPAR-γ 和 PPAR-α 激动剂对 db/db 和饮食诱导肥胖小鼠的碳水化合物和脂质代谢表现出独特的协同作用
  • DOI:
    10.1007/s00125-016-3912-9
  • 发表时间:
    2016-03-16
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Li Feng;Huan Luo;Zhijian Xu;Zhuo Yang;Guoxin Du;Yu Zhang;Lijing Yu;K. Hu;Weiliang Zhu;Qingchun Tong;Kaixian Chen;Fujiang Guo;Cheng Huang;Yiming Li
  • 通讯作者:
    Yiming Li

Cheng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cheng Huang', 18)}}的其他基金

SHF: Small: Next-Generation Fully Integrated Power Management Circuits: Enabling Faster and More Efficient Computing and Communication in Smaller and Lower-Cost Mobile Electronics
SHF:小型:下一代全集成电源管理电路:在更小、更低成本的移动电子产品中实现更快、更高效的计算和通信
  • 批准号:
    2007154
  • 财政年份:
    2020
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant

相似国自然基金

3D打印功能微凝胶诱导星形胶质细胞由A1向A2表型极化促进脊髓损伤修复的研究
  • 批准号:
    82001320
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于3D冠层的玉米株行距及行向种植策略优化研究
  • 批准号:
    31871519
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
经颅磁诱导3D微凝胶包载的骨髓源神经祖细胞向神经元分化技术基础研究
  • 批准号:
    81871842
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
Tenascin-C对肾移植慢性排斥中巨噬细胞向肌成纤维细胞转分化的调节作用及机制研究
  • 批准号:
    81800658
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
聚合物稳定液晶/向列相液晶复合微透镜阵列的结构设计及其裸眼3D显示
  • 批准号:
    51703071
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

都市河川における自律型船舶向け3D地図構造化設計と点群地図参照法の構築と検証
城市河流自主船舶3D地图结构化设计及点云地图参考方法构建与验证
  • 批准号:
    24K07704
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ERI: Towards Robust and Secure Intelligent 3D Sensing Systems
ERI:迈向稳健、安全的智能 3D 传感系统
  • 批准号:
    2347426
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
機能性ガラスフィラー添加3Dプリンター用UDMA系光重合樹脂の機械的・物理的特性の向上
含有功能性玻璃填料的 3D 打印机用 UDMA 基光聚合树脂的机械和物理性能的改善
  • 批准号:
    24K13001
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
皮下膵島移植の成績を向上する3D膵島細胞シートの開発
开发3D胰岛细胞片以改善皮下胰岛移植的效果
  • 批准号:
    24K11807
  • 财政年份:
    2024
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: CMOS+X: 3D integration of CMOS spiking neurons with AlBN/GaN-based Ferroelectric HEMT towards artificial somatosensory system
合作研究:CMOS X:CMOS 尖峰神经元与 AlBN/GaN 基铁电 HEMT 的 3D 集成,用于人工体感系统
  • 批准号:
    2324780
  • 财政年份:
    2023
  • 资助金额:
    $ 50.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了