CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling

职业:使用计算模型表征声带血管病变生物力学

基本信息

  • 批准号:
    2338676
  • 负责人:
  • 金额:
    $ 60.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will advance fundamental understanding of the vascular lesions of human vocal folds. These lesions refer to dilated blood vessels in the fold’s tissue and are particularly common in professions with high voice usage, such as educators, public speakers, and singers. The presence of vascular lesions and their potential rupture affect the ability of the tissue to vibrate normally, which severely disrupts speech and leads to vocal fatigue. However, the underlying mechanisms of lesion growth and fatigue resulting from this condition remain uncertain. There is thus a significant need to investigate the effects of vascular lesions on the phonation process. This project will develop predictive computational models of coupled aerodynamics, hemodynamics, and solid mechanics to account for these lesions, their progression, and the corresponding voice fatigue. The resultant framework will enable improvements in biomechanical models of the human larynx, while such models are also being considered for potential use in surgical interventions, enhancement in prevention of voice disorders, and exploring issues related to voice training. Along with the development and dissemination of technical tools, the award will also support the education and training of underrepresented minorities, expansion through virtual and on-site outreach activities to inspire appreciation of phonation biomechanics within a general audience and connect with interested patients, as well as interaction with pre-collegiate students from marginalized backgrounds through an annual summer workshop. The specific goal of the research is to analyze the three-way interaction between the vascular lesion, poroviscoelastic vocal fold tissue, and glottal airflow, to illustrate the biomechanical characteristics of the tissue and quantify metrics that are hypothesized to be associated with vocal fatigue. Therefore, the research objectives of this project include: (1) developing a fully coupled multi-component fluid-poroelastic structure interaction modeling approach integrating the turbulent glottal airflow and permeable fold tissue in presence of vascular lesions to assess voice fatigue indicators, (2) creating a computational solver for modeling the lesion progression in the form of the pressure-driven crack filled with blood propagating in the poroelastic tissue to explore the significance of phonation conditions, and (3) quantifying the uncertainty in the model predictions using a Monte-Carlo type simulation approach to evaluate how various physical parameters and morphological features affect the fold’s biomechanics and lesion propagation. This project will enable the PI to advance the knowledge base in mechanics and computational simulation, establishing the foundation for her long-term career in speech biomechanics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展(职业)资助将促进对人类声带血管病变的基本了解。这些病变是指声带组织中扩张的血管,在教育工作者、公共演讲者等使用声音较多的职业中尤其常见。血管病变的存在及其潜在的破裂会影响组织正常振动的能力,从而严重扰乱言语并导致声音疲劳。然而,这种情况引起的病变生长和疲劳的潜在机制仍不确定。那里因此,迫切需要研究血管病变对发声过程的影响,该项目将开发耦合空气动力学、血流动力学和固体力学的预测计算模型,以解释这些病变、其进展以及相应的声音疲劳框架。能够改进人类喉部的生物力学模型,同时随着技术的发展和传播,这些模型也被考虑用于外科手术、加强声音障碍的预防以及探索与声音训练相关的问题。该奖项还将支持对代表性不足的少数群体的教育和培训,通过虚拟和现场推广活动进行扩展,以激发普通观众对发声生物力学的欣赏,并与感兴趣的患者建立联系,以及与来自各州的大学预科学生进行互动。该研究的具体目标是分析血管病变、多孔粘弹性声带组织和声门气流之间的三向相互作用,以说明组织的生物力学特征并量化。因此,该项目的研究目标包括:(1)开发一种完全耦合的多组分流体-多孔弹性结构相互作用建模方法,将湍流声门气流和可渗透褶皱组织集成在一起。 (2) 创建一个计算求解器,以压力驱动的裂纹形式模拟病变进展,该裂纹充满血液在多孔弹性组织中传播,以探索发声条件的重要性, (3) 使用蒙特卡罗型模拟方法量化模型预测中的不确定性影响,以评估褶皱的生物力学和病变传播的各种物理参数和形态特征。该项目将使 PI 能够推进力学和损伤传播方面的知识基础。计算模拟,为她在言语生物力学领域的长期职业生涯奠定了基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rana Zakerzadeh其他文献

Academic Games as a Form of Increasing Student Engagement in Remote Teaching
学术游戏是提高学生远程教学参与度的一种形式
A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
一种材料建模方法,可有效响应平面软组织,从而实现高效的计算模拟。
Numerical analysis of stenoses severity and aortic wall mechanics in patients with supravalvular aortic stenosis
主动脉瓣上狭窄患者狭窄严重程度和主动脉壁力学的数值分析
  • DOI:
    10.1016/j.compbiomed.2021.104573
  • 发表时间:
    2021-06-12
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Talha Lone;Angelica Alday;Rana Zakerzadeh
  • 通讯作者:
    Rana Zakerzadeh
Computational analysis of energy distribution of coupled blood flow and arterial deformation
血流与动脉变形耦合能量分布的计算分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rana Zakerzadeh;M. Bukač;P. Zunino
  • 通讯作者:
    P. Zunino
Effects of poroelasticity on fluid-structure interaction in arteries: A computational sensitivity study
孔隙弹性对动脉流固相互作用的影响:计算灵敏度研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bukač;I. Yotov;Rana Zakerzadeh;P. Zunino
  • 通讯作者:
    P. Zunino

Rana Zakerzadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rana Zakerzadeh', 18)}}的其他基金

ERI: A Novel Multiphysics Framework for Fluid Circulation and Oxygen Transport in Vocal Folds
ERI:声带中液体循环和氧气运输的新型多物理场框架
  • 批准号:
    2138225
  • 财政年份:
    2022
  • 资助金额:
    $ 60.38万
  • 项目类别:
    Standard Grant

相似国自然基金

电池壳钢多道次拉深与变薄拉深复合成形等效实验表征和成形极限预测
  • 批准号:
    52305389
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于三维流体微环境控制与原位表征的人工微血管组织构建方法研究
  • 批准号:
    62373235
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用连铸结晶器内渣金界面可测信息表征钢液流动模式研究
  • 批准号:
    52304348
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型细菌色氨酸羟化酶家族的酶学表征、生化机理与应用研究
  • 批准号:
    32370051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社会交互中他人信息表征机制及其计算模型
  • 批准号:
    32371088
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Characterization of clinical phenotypes of laryngeal dystonia and voice tremor
喉肌张力障碍和声音震颤的临床表型特征
  • 批准号:
    10488250
  • 财政年份:
    2021
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of clinical phenotypes of laryngeal dystonia and voice tremor
喉肌张力障碍和声音震颤的临床表型特征
  • 批准号:
    10689289
  • 财政年份:
    2021
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of 3D feeding kinematics and EMG of rats and laminar specific single cell encoding properties in the motor cortex
大鼠 3D 进食运动学和肌电图的表征以及运动皮层层状特定单细胞编码特性
  • 批准号:
    10006877
  • 财政年份:
    2019
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of 3D kinematics and EMG and related information in neural activities recorded from the orofacial motor cortex during feeding in rats - Revision - 1
大鼠进食期间口面部运动皮层记录的神经活动的 3D 运动学和 EMG 特征及相关信息 - 修订版 - 1
  • 批准号:
    10227568
  • 财政年份:
    2019
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of immune response in vocal fold injury and tissue regeneration
声带损伤和组织再生中免疫反应的表征
  • 批准号:
    8526822
  • 财政年份:
    2012
  • 资助金额:
    $ 60.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了