CAREER: Ultrawide Bandgap Aluminum Nitride FETs for Power Electronics

职业:用于电力电子器件的超宽带隙氮化铝 FET

基本信息

  • 批准号:
    2338604
  • 负责人:
  • 金额:
    $ 52.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Power electronics are increasingly becoming key enablers for transportation electrification, renewable energy, grid modernization, and carbon emission reduction for a green, sustainable economy. The state-of-the-art silicon power devices are approaching silicon material limits, which urges the exploration of new semiconductors for next-generation power electronics. Ultrawide bandgap (UWBG) semiconductors possess unique material properties for future power electronics that promise far superior performance beyond the incumbent silicon and maturing gallium nitride and silicon carbide power technologies. Aluminum nitride (AlN) exhibits the largest bandgap and critical electric field in the UWBG semiconductor family with excellent thermal conductivity, which can enable power electronics with higher efficiency, higher voltage, high frequency, and higher operation temperature. However, the performance of current AlN power devices lags far behind AlN material limits due to poor fundamental understanding of AlN epitaxy, surfaces, contacts, and devices. This project aims to significantly advance the development of UWBG AlN-based field-effect transistors (FETs) for high-performance power electronics through innovative integrated material and device engineering. Critical material and device obstacles for AlN power FETs will be tackled, and the project will lead to new fundamental insights into AlN and its epitaxial science, surface, contacts, and power devices. This research is promising to unlock the full potential of UWBG AlN for high-efficiency, high-voltage, fast, compact, and robust power electronics and transformative for other UWBG semiconductors’ fundamental research and device development. The successful outcome of the UWBG AlN power technology can increase energy efficiency and security, reduce fossil fuel consumption, improve resiliency and efficiency of the electric grid, enhance penetration of electric vehicles and renewables, and significantly contribute to carbon neutral and net-zero carbon goals. In addition, this project will offer various education opportunities for undergraduate, graduate, and K-12 students on power semiconductors and enhance student diversity in STEM fields, including mentoring undergraduates in research, developing new semiconductor curriculum, organizing outreach and intern programs for K-12 students, broadening the participation of underrepresented groups in STEM, and collaborating with semiconductor industry for workforce training.The overarching goal of this project is to develop high-performance UWBG AlN power FETs through holistic material and device engineering for next-generation high-efficiency, high-voltage, high-temperature power electronics. Five research thrusts are proposed to address crucial material and device impediments toward AlN power FETs with performance close to AlN limits. AlN epitaxy science and engineering in Thrust 1 will obtain a fundamental understanding of growth dynamics and doping mechanisms of AlN homoepitaxy via metalorganic chemical vapor deposition (MOCVD) and shed light on defects, doping, and carrier transport in homoepitaxial AlN. AlN surface science and engineering in Thrust 2 will significantly enrich the surface science and knowledge of AlN on different crystal orientations using comprehensive material and electrical characterizations and develop effective surface engineering to mitigate adverse surface effects. AlN contact study and optimization in Thrust 3 will enhance and optimize AlN Schottky and ohmic contacts essential in AlN FETs via novel regrowth and processing technologies. AlN power device engineering in Thrust 4 will implement innovative electric field management approaches to prevent premature device failure and develop normally-off AlN power FETs with the aid of device modeling and material innovations from other thrusts. Thrust 5 will realize monolithically integrated AlN power electronics with power FETs, drivers, and control circuits for higher efficiency, higher power density, faster switching, smaller form factor, and higher robustness, which is the first of its kind.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电力电子日益成为交通电气化、可再生能源、电网现代化和绿色可持续经济碳减排的关键推动者。最先进的硅功率器件正在接近硅材料的极限,这促使人们对硅材料进行探索。用于下一代电力电子器件的超宽带隙 (UWBG) 半导体具有适合未来电力电子器件的独特材料特性,有望提供超越现有硅以及成熟的氮化镓和碳化硅铝电力技术的卓越性能。氮化物(AlN)在UWBG半导体家族中表现出最大的带隙和临界电场,具有优异的导热性,可以使电力电子具有更高的效率、更高的电压、更高的频率和更高的工作温度,但目前AlN功率的性能。由于对 AlN 外延、表面、接触和器件的基本了解不足,器件远远落后于 AlN 材料的限制。该项目旨在显着推进基于 UWBG AlN 的场效应晶体管 (FET) 的开发。通过创新的集成材料和器件工程实现高性能电力电子,将解决 AlN 功率 FET 的关键材料和器件障碍,该项目将为 AlN 及其外延科学、表面、接触和功率器件带来新的基本见解。这项研究有望释放UWBG AlN在高效、高压、快速、紧凑和鲁棒电力电子方面的全部潜力,并为其他UWBG半导体的基础研究和器件开发带来变革性的成功成果。 UWBG AlN电力技术可以提高能源效率和安全性,减少化石燃料消耗,提高电网的弹性和效率,提高电动汽车和可再生能源的普及率,并为碳中和和净零碳目标做出重大贡献。该项目将为本科生、研究生和 K-12 学生提供功率半导体方面的各种教育机会,并增强 STEM 领域的学生多样性,包括指导本科生进行研究、开发新的半导体课程、为 K-12 学生组织外展和实习项目,扩大参与该项目的总体目标是通过整体材料和器件工程开发高性能 UWBG AlN 功率 FET,以实现下一代高效率、高电压、高提出了五项研究重点,以解决性能接近 AlN 外延科学与工程极限的 AlN 功率 FET 的关键材料和器件障碍。 1 将通过金属有机化学气相沉积 (MOCVD) 获得对 AlN 同质外延的生长动力学和掺杂机制的基本了解,并阐明同质外延 AlN 表面科学和工程中的缺陷、掺杂和载流子传输,这将极大地丰富该领域的内容。 Thrust 3 中的表面科学和关于不同晶体取向的 AlN 知识,以及开发有效的表面工程以减轻不利的表面效应,将增强和优化。通过 Thrust 4 中的新型 AlN 功率器件工程,AlN 肖特基和欧姆接触对于 AlN FET 至关重要,将实施创新的电场管理方法,以防止器件过早失效,并借助器件建模和开发常关型 AlN 功率 FET。 Thrust 5 将实现具有功率 FET、驱动器和控制电路的单片集成 AlN 电力电子器件,以实现更高的效率、更高的功率密度、更快的开关、更小的外形尺寸以及该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Houqiang Fu其他文献

Vertical van der Waals heterojunction diodes comprising 2D semiconductors on 3D β-Ga2O3
  • DOI:
    10.1039/d3nr01987j
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Chloe Leblanc;Dinusha Herath Mudiyanselage;Seunguk Song;Huairuo Zhang;Albert V. Davydov;Houqiang Fu;Deep Jariwala
  • 通讯作者:
    Deep Jariwala
The Mechanism of Performance Variations in MoS$_{text{2}}$ Vertical Schottky Metal–Semiconductor Photodiode Based on Thermionic Emission Theory
基于热电子发射理论的MoS$_{text{2}}$立式肖特基金属半导体光电二极管性能变化机理
  • DOI:
    10.1109/ted.2022.3202149
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Xisai Zhang;Xinpei Duan;Wencheng Niu;Xingqiang Liu;Xuming Zou;Hao Huang;Dinusha Herath Mudiyanselage;Houqiang Fu;Bei Jiang;Guoxia Liu;Zhenyu Yang
  • 通讯作者:
    Zhenyu Yang
Experimental demonstration of non-line-of-sight visible light communication with different reflecting materials using a GaN-based micro-LED and modified IEEE 802.11ac
使用基于 GaN 的 micro-LED 和改进的 IEEE 802.11ac 与不同反射材料进行非视距可见光通信的实验演示
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhijian Lu;Pengfei Tian;Houqiang Fu;Jossue Montes;Xuanqi Huang;Hong Chen;Xiaodong Zhang;Xiaoyan Liu;Ran Liu;Lirong Zheng;Xiaolin Zhou;Erdan Gu;Yi Liu;Yuji Zhao
  • 通讯作者:
    Yuji Zhao

Houqiang Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Houqiang Fu', 18)}}的其他基金

Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
  • 批准号:
    2210153
  • 财政年份:
    2022
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Standard Grant
Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
  • 批准号:
    2302696
  • 财政年份:
    2022
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Standard Grant

相似国自然基金

超宽带近红外荧光陶瓷的常压玻璃晶化法制备及光谱调控研究
  • 批准号:
    12304443
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
塞贝克系数和热导率联合调控增强超宽带光热电响应的研究
  • 批准号:
    62305062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于线性阵列超宽带雷达的刮板输送机上窜下滑监测方法研究
  • 批准号:
    52304180
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
等离子体超宽带微波辐射源的环形阴极放电及长脉冲电子束形成机理研究
  • 批准号:
    52377163
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高各向异性FeCoNi/碳纳米管-石墨烯复合材料的多场耦合构筑及其低频超宽带吸波性能
  • 批准号:
    52301239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of ultrawide bandgap deep UV photodetectors
超宽带隙深紫外光电探测器的研制
  • 批准号:
    2902113
  • 财政年份:
    2024
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Studentship
Ultrawide Bandgap AlGaN Power Electronics - Transforming Solid-State Circuit Breakers (ULTRAlGaN)
超宽带隙 AlGaN 电力电子 - 改造固态断路器 (ULTRAlGaN)
  • 批准号:
    EP/X035360/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Research Grant
Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
  • 批准号:
    EP/Z531091/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Research Grant
Triple Halide Ultrawide Bandgap Metal Halide Perovskites
三卤化物超宽禁带金属卤化物钙钛矿
  • 批准号:
    2245435
  • 财政年份:
    2023
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Continuing Grant
Evaluation of Ultrawide Bandgap semiconductors for high performance electronics
用于高性能电子产品的超宽带隙半导体评估
  • 批准号:
    2749287
  • 财政年份:
    2022
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了