CAREER: Machine Learning for Discrete Optimization

职业:用于离散优化的机器学习

基本信息

  • 批准号:
    2338226
  • 负责人:
  • 金额:
    $ 55.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-15 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

Discrete optimization algorithms are used to solve complex problems, such as finding the best routes for delivery trucks or planning global airline schedules. Oftentimes, these problems are extremely challenging to solve, requiring significant computational resources and running time. This project aims to use machine learning (ML) to solve these complex problems more efficiently. After all, the problems that, for example, a shipping company must solve to route its trucks will change daily, but not drastically: although demand and traffic will vary, the road network will remain the same. This means that there is likely underlying structure that can be uncovered with the help of ML to optimize algorithm runtime on future problems. This project aims to explore this new frontier of algorithm design where ML can be used to improve the performance of existing discrete optimization algorithms, help practitioners select among different algorithms, and--one day--design entirely new algorithms. In addition to its main technical objectives, this project extends its impact through community engagement and education. This includes expanding the "Learning Theory Alliance," a mentorship program designed to support and develop the ML theory community. The project also includes plans to train graduate students, broaden participation in ML theory research, and integrate the research into new courses at the undergraduate and graduate levels.This project investigates how ML can be integrated into algorithm design from a variety of different perspectives, including (1) Algorithm selection: How can we use ML to choose which algorithm to employ to solve a computational problem? (2) Algorithm configuration: Many practical algorithms, such as integer programming solvers, come with hundreds of tunable parameters that are notoriously difficult to tune by hand. How can we automate algorithm configuration using ML? (3) Algorithm discovery: The long-term goal of this research direction is to identify new algorithms using ML that have never previously been analyzed. Employing ML for discrete optimization is challenging because combinatorial algorithms are highly sensitive, and minor adjustments can result in significant changes in runtime or solution quality. These challenges pose a unique opportunity for the research in this project to provide theoretically-backed guidance for aligning ML approaches to the algorithmic tasks at hand, enabling us to solve extremely complex combinatorial problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
离散优化算法用于解决复杂问题,例如寻找送货卡车的最佳路线或规划全球航班时刻表。通常,解决这些问题极具挑战性,需要大量的计算资源和运行时间。该项目旨在利用机器学习(ML)更有效地解决这些复杂问题。毕竟,运输公司必须解决的卡车路线问题每天都会发生变化,但不会发生很大变化:尽管需求和交通量会发生变化,但道路网络将保持不变。这意味着在机器学习的帮助下可能会发现潜在的结构,以优化未来问题的算法运行时间。该项目旨在探索算法设计的新领域,其中机器学习可用于提高现有离散优化算法的性能,帮助从业者在不同算法中进行选择,并有一天设计全新的算法。除了主要技术目标外,该项目还通过社区参与和教育扩大其影响。这包括扩大“学习理论联盟”,这是一个旨在支持和发展机器学习理论社区的指导计划。该项目还包括培养研究生、扩大对机器学习理论研究的参与以及将研究融入本科生和研究生水平的新课程的计划。该项目从各种不同的角度研究机器学习如何融入算法设计,包括(1) 算法选择:我们如何使用机器学习来选择采用哪种算法来解决计算问题? (2) 算法配置:许多实用算法,例如整数规划求解器,都带有数百个可调参数,这些参数很难手动调整。我们如何使用 ML 自动化算法配置? (3) 算法发现:该研究方向的长期目标是使用机器学习来识别以前从未分析过的新算法。使用机器学习进行离散优化具有挑战性,因为组合算法非常敏感,微小的调整可能会导致运行时间或解决方案质量发生重大变化。这些挑战为该项目的研究提供了独特的机会,为将 ML 方法与手头的算法任务结合起来提供理论支持的指导,使我们能够解决极其复杂的组合问题。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ellen Vitercik其他文献

Learning the best algorithm for max-cut, clustering, and other partitioning problems
学习最大割、聚类和其他划分问题的最佳算法
  • DOI:
    10.1016/j.ceramint.2022.11.230
  • 发表时间:
    2016-11-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria;Vaishnavh Nagarajan;Ellen Vitercik;Colin White
  • 通讯作者:
    Colin White
Generalization Guarantees for Multi-Item Profit Maximization: Pricing, Auctions, and Randomized Mechanisms
多项目利润最大化的泛化保证:定价、拍卖和随机机制
  • DOI:
    10.1287/opre.2021.0026
  • 发表时间:
    2017-04-29
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Maria;T. S;holm;holm;Ellen Vitercik
  • 通讯作者:
    Ellen Vitercik
Algorithmic Contract Design for Crowdsourced Ranking
众包排名的算法合约设计
  • DOI:
    10.48550/arxiv.2310.09974
  • 发表时间:
    2023-10-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kiriaki Frangias;Andrew Lin;Ellen Vitercik;Manolis Zampetakis
  • 通讯作者:
    Manolis Zampetakis
Revenue maximization via machine learning with noisy data
通过机器学习和噪声数据实现收入最大化
  • DOI:
    10.1111/j.1476-5381.2011.01798.x
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Ellen Vitercik;Tom Yan
  • 通讯作者:
    Tom Yan
Generalization in portfolio-based algorithm selection
基于投资组合的算法选择的泛化
  • DOI:
    10.1609/aaai.v35i14.17451
  • 发表时间:
    2020-12-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria;T. S;holm;holm;Ellen Vitercik
  • 通讯作者:
    Ellen Vitercik

Ellen Vitercik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

通过机器学习和多模式验证聚焦新靶点ENHO/Adropin在系统性硬化症中的作用和机制研究
  • 批准号:
    82371818
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习开发更安全有效的有机磷阻燃剂的研究
  • 批准号:
    22306030
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
网络入侵检测机器学习模型多维鲁棒性评测方法研究
  • 批准号:
    62372126
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于cfDNA甲基化的机器学习模型在结直肠癌早期诊断中的研究
  • 批准号:
    82302640
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 55.88万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 55.88万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 55.88万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 55.88万
  • 项目类别:
    Continuing Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
  • 批准号:
    2340273
  • 财政年份:
    2024
  • 资助金额:
    $ 55.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了