CAREER: Controlling the Deformability of Quantum Dots Solids for Wearable NIR Optoelectronics

职业:控制可穿戴近红外光电器件的量子点固体的变形能力

基本信息

项目摘要

NontechnicalWearable electronics that emit and detect near-infrared (IR) light hold promise for affordable and non-invasive healthcare, including early detection of disease and light therapy. In order to adapt to the natural movements of the skin, materials must maintain their structural integrity and electronic properties while being deformed or stressed. Many materials active in the near-IR are rigid and brittle, and thus cannot be used for wearable devices. The discovery of new materials for near-IR electronics is hindered due to a lack of fundamental understanding of how they behave under stress or strain. This project directly addresses that challenge. The PI will synthesize and systematically investigate composites that combine the strong near-IR optical response of quantum dots with the attractive electronic and physical properties of organic semiconductors. Through seamless integration of these materials, the PI will control their interactions and investigate their mechanical, optical, and electronic behavior. The fundamental understanding of molecular interactions developed through this project will enable breakthroughs in flexible electronics for healthcare, soft robotics, and in other fields. The PI is committed to broadening participation in STEM through strengthening pathway for students from high school through postgraduate studies. Education efforts will engage high school students in learning about nanomaterials and nanotechnology. The PI will create a new undergraduate course with interactive STEM outreach, and host a summer undergraduate research intern, thereby fostering diversity, equity, and inclusion in STEM.TechnicalThis project aims to better understand how colloidal quantum dot (CQD) solids respond to strain, by developing crucial structure-property relationships to reveal how the molecular-level chemical and structural interactions between CQD and conjugated polymers (CP) impact the mechanical, optical, and electronic properties of the resulting heterostructures, and importantly how these key properties respond to mechanical deformation. However, it is currently unclear how the molecular-level chemical and structural interactions between these two components impact the carrier transport and recombination process, their ability to deform, and, more critically, how the chemical, structural, and optoelectronic properties change under strain. This project develops critical fundamental understandings of the mechano-optoelectronic properties of the CQD-CP heterostructures by (1) investigating the chemical and structural interaction between CQD and CP and their impact on the charge carrier transport and recombination characteristics of the CQD-CP heterostructures with different interfacial chemistry; (2) understanding the changes of the key chemical, structural and optoelectronic properties under strain and elucidate the underlying mechanism. To achieve this, the research team will first utilize a unique ligands exchange strategy to construct CQD - CP heterostructures with controllable interfaces at the molecular level. The research team will then employ X-ray photoelectron and X-ray diffraction spectroscopy, transmission electron spectroscopy, steady and time-resolved optical spectroscopy, and electrical characterization, with and without applied strain, to provide insights into how structure, charge transport, and recombination are impacted by the interfacial chemistry, and how they change under strain. The research activities provide fundamental knowledge that is foundational toward the rational design of CQD-based wearable optoelectronics and unlock their potential in personal healthcare, and soft robotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性可发射和检测近红外 (IR) 光的可穿戴电子产品有望实现经济实惠且非侵入性的医疗保健,包括疾病的早期检测和光疗法。为了适应皮肤的自然运动,材料在变形或受压时必须保持其结构完整性和电子特性。许多在近红外区域活跃的材料又硬又脆,因此不能用于可穿戴设备。由于缺乏对近红外电子器件在应力或应变下的行为方式的基本了解,近红外电子器件新材料的发现受到阻碍。该项目直接解决了这一挑战。 PI 将合成并系统地研究将量子点强大的近红外光学响应与有机半导体有吸引力的电子和物理特性相结合的复合材料。通过这些材料的无缝集成,PI 将控制它们的相互作用并研究它们的机械、光学和电子行为。通过该项目开发的对分子相互作用的基本理解将使医疗保健、软机器人和其他领域的柔性电子产品取得突破。 PI 致力于通过加强学生从高中到研究生学习的途径来扩大对 STEM 的参与。教育工作将让高中生学习纳米材料和纳米技术。 PI 将创建一门新的本科生课程,提供交互式 STEM 推广,并举办暑期本科生研究实习生,从而促进 STEM 的多样性、公平性和包容性。技术该项目旨在更好地了解胶体量子点 (CQD) 固体如何响应应变、通过开发关键的结构-性能关系来揭示 CQD 和共轭聚合物 (CP) 之间的分子级化学和结构相互作用如何影响所得异质结构的机械、光学和电子性能,以及重要的是这些关键如何影响特性响应机械变形。然而,目前尚不清楚这两种成分之间的分子级化学和结构相互作用如何影响载流子传输和复合过程、它们的变形能力,更重要的是,在应变下化学、结构和光电特性如何变化。该项目通过 (1) 研究 CQD 和 CP 之间的化学和结构相互作用及其对 CQD-CP 异质结构的载流子传输和复合特性的影响,对 CQD-CP 异质结构的机械光电特性有了重要的基本理解不同的界面化学; (2)了解应变下关键化学、结构和光电性质的变化并阐明其潜在机制。为了实现这一目标,研究团队将首先利用独特的配体交换策略,在分子水平上构建具有可控界面的CQD-CP异质结构。然后,研究小组将利用 X 射线光电子和 X 射线衍射光谱、透射电子光谱、稳定和时间分辨光谱以及电学表征(无论是否施加应变)来深入了解结构、电荷传输和重组受到界面化学及其在压力下如何变化的影响。这些研究活动提供了基础知识,这些知识是基于 CQD 的可穿戴光电器件的合理设计的基础,并释放了它们在个人医疗保健和软机器人领域的潜力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiwen Gong其他文献

Quantum Dots in Perovskites: Liquid Heteroepitaxy for Optoelectronics
钙钛矿中的量子点:用于光电子学的液体异质外延
  • DOI:
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiwen Gong
  • 通讯作者:
    Xiwen Gong
Electron–phonon interaction in efficient perovskite blue emitters
高效钙钛矿蓝色发射体中的电子与声子相互作用
  • DOI:
    10.1038/s41563-018-0081-x
  • 发表时间:
    2018-05-14
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Xiwen Gong;O. Voznyy;Ankit Jain;Wenjia Liu;R;y P. Sabatini;y;Zachary T. Piontkowski;G. Walters;G
  • 通讯作者:
    G
Highly ef fi cient quantum dot near-infrared light-emitting diodes
高效量子点近红外发光二极管
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiwen Gong;Zhenyu Yang;G. Walters;R. Comin;Zhijun Ning;Eric M. Beauregard;V. Adinolfi;O. Voznyy;E. Sargent
  • 通讯作者:
    E. Sargent
Reply to: Perovskite decomposition and missing crystal planes in HRTEM
回复:HRTEM 中钙钛矿分解和晶面缺失
  • DOI:
    10.1038/s41586-021-03424-3
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Zhijun Ning;Xiwen Gong;Riccardo Comin;G. Walters;Fengjia Fan;O. Voznyy;Emre Yassitepe;A. Buin;S. Hoogl;E. Sargent
  • 通讯作者:
    E. Sargent
A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes
多功能分子改性剂可实现高效大面积钙钛矿发光二极管
  • DOI:
    10.1016/j.joule.2020.07.002
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    39.8
  • 作者:
    Haoran Wang;Xiwen Gong;Dewei Zhao;Yong-Biao Zhao;Sheng Wang;Jianfeng Zhang;Lingmei Kong;Bin Wei;Rafael Quintero-Bermudez;Oleks;r Voznyy;Yuequn Shang;Zhijun Ning;Yanfa Yan;Edward H. Sargent;Xuyong Yang
  • 通讯作者:
    Xuyong Yang

Xiwen Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于可信数据事件触发的网络化安全控制研究
  • 批准号:
    62373240
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
离体心脏修复机器人智能感知与控制
  • 批准号:
    62333014
  • 批准年份:
    2023
  • 资助金额:
    229 万元
  • 项目类别:
    重点项目
面向人机交互的磁流变柔顺执行器优化设计方法与磁滞补偿控制研究
  • 批准号:
    52305064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海上特种作业无人艇的强鲁棒性动力定位控制方法研究
  • 批准号:
    62373237
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
混合三相电压型整流器多目优化设计与功率协调控制方法
  • 批准号:
    52377191
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
  • 批准号:
    2906295
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
Understanding and Controlling Structure in Metal Ion-Linked Multilayer Upconversion Solar Cells
了解和控制金属离子连接多层上转换太阳能电池的结构
  • 批准号:
    2327754
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了