CAREER: Distances and matchings under the lens of fine-grained complexity

职业:细粒度复杂性镜头下的距离和匹配

基本信息

  • 批准号:
    2337901
  • 负责人:
  • 金额:
    $ 64.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Traditionally, the theory of computational complexity classified problems as tractable or intractable depending on whether or not a polynomial time algorithm to solve a problem exactly exists (“P vs NP”). However, in recent years the understanding that these categories are too coarse to characterize tractability in the era of modern big data applications has motivated the theory of fine-grained complexity, and more recently, answering the question of whether a near-linear time algorithm exists that solves a close-enough approximate problem. The objective of this CAREER project is to develop a theory of fine-grained complexity for approximation algorithms for a few fundamental problems. These problems are not only of theoretical importance in the study of algorithm design but are also important in practical applications in diverse areas such as bioinformatics, image comparison, and online matching. The educational plan includes development of new teaching materials, mentoring of undergraduate and graduate students, and organizing workshops.The project focuses on a class of problems in algorithm design known as metric matching problems. The research team will investigate a primary exemplar of this class, approximate edit distance (and it's maximization counterpart, longest common subsequence), as a general approach for studying such problems as Earth Mover's Distance, Root Mean Square Distance, and Dynamic Time Warping. The goal is to develop a new framework that provides a clearer picture of the possible complexity-approximation quality tradeoff frontier for problems in P and to understand where algorithm performance is either achievable or ruled out by the Strong Time Exponential Hypothesis (SETH). The project is expected to advance the understanding of these long-standing open problems by exploring new connections between matching problems in abstract graphs and the embedding of those graphs in concrete metrics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,计算复杂性理论根据是否存在解决问题的多项式时间算法(“P vs NP”)将问题分类为易处理或难处理。然而,近年来,人们对这些类别的理解过于粗略。描述现代大数据应用时代的易处理性激发了细粒度复杂性理论的发展,最近,回答是否存在可以解决足够接近的近似问题的近线性时间算法的问题是本职业的目标。该项目的目的是为一些基本问题的近似算法开发细粒度复杂性理论,这些问题不仅在算法设计的研究中具有重要的理论意义,而且在生物信息学、图像比较等不同领域的实际应用中也很重要。教育计划包括开发新教材、指导本科生和研究生以及组织研讨会。该项目重点研究算法设计中的一类称为度量匹配问题的问题。以此为例类,近似编辑距离(及其对应的最大化,最长公共子序列),作为研究地球移动距离、均方根距离和动态时间扭曲等问题的通用方法,目标是开发一个新的框架,提供一个新的框架。更清晰地了解 P 中的问题可能的复杂性近似质量权衡边界,并了解强时间指数假设 (SETH) 可以实现或排除算法性能的情况。该项目预计通过探索抽象图形中的匹配问题与将这些图形嵌入到具体指标之间的新联系来促进对这些长期存在的开放问题的理解。该奖项符合 NSF 的法定使命,并通过评估被认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aviad Rubinstein其他文献

Approximating Maximum Matching Requires Almost Quadratic Time
近似最大匹配需要几乎二次的时间
Parallel Sampling via Counting
通过计数并行采样
C C ] 7 M ay 2 01 8 Fine-grained Complexity Meets
C C ] 7 May 2 01 8 细粒度的复杂性相遇
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lijie Chen;S. Goldwasser;Kaifeng Lyu;N. Rothblum;Aviad Rubinstein
  • 通讯作者:
    Aviad Rubinstein
Approximate Earth Mover's Distance in Truly-Subquadratic Time
真次方时间内推土机的近似距离
  • DOI:
    10.48550/arxiv.2310.19514
  • 发表时间:
    2023-10-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lorenzo Beretta;Aviad Rubinstein
  • 通讯作者:
    Aviad Rubinstein
Fast swap regret minimization and applications to approximate correlated equilibria
快速交换后悔最小化和近似相关平衡的应用
  • DOI:
    10.48550/arxiv.2310.19647
  • 发表时间:
    2023-10-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Binghui Peng;Aviad Rubinstein
  • 通讯作者:
    Aviad Rubinstein

Aviad Rubinstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aviad Rubinstein', 18)}}的其他基金

NSF-BSF: AF: Small: Algorithmic Game Theory: Equilibria and Beyond
NSF-BSF:AF:小:算法博弈论:均衡及超越
  • 批准号:
    2112824
  • 财政年份:
    2021
  • 资助金额:
    $ 64.6万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Modern Combinatorial Optimization: Incentives, Uncertainty, and Smoothed Analysis
合作研究:AF:中:现代组合优化:激励、不确定性和平滑分析
  • 批准号:
    1954927
  • 财政年份:
    2020
  • 资助金额:
    $ 64.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

远距离微波传能收发天线的高效匹配机理及阵列设计
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
面向短距离光互连的光纤旋涡模式产生及调控研究
  • 批准号:
    61875076
  • 批准年份:
    2018
  • 资助金额:
    69.0 万元
  • 项目类别:
    面上项目
远距离人脸识别中低质图像增强关键理论研究
  • 批准号:
    61872068
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
具有公共自行车共享系统的多模式城市公交网络建模与优化研究
  • 批准号:
    61773348
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于高光谱的近距离场景分析的研究
  • 批准号:
    61772057
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Expanding the Dynamical Map of the Milky Way with Asteroseismic Distances
合作研究:用星震距离扩展银河系动态图
  • 批准号:
    2305425
  • 财政年份:
    2022
  • 资助金额:
    $ 64.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Expanding the Dynamical Map of the Milky Way with Asteroseismic Distances
合作研究:用星震距离扩展银河系动态图
  • 批准号:
    2305425
  • 财政年份:
    2022
  • 资助金额:
    $ 64.6万
  • 项目类别:
    Standard Grant
Study of the Strong Nuclear Interaction at Short Distances
短距离强核相互作用的研究
  • 批准号:
    2137604
  • 财政年份:
    2022
  • 资助金额:
    $ 64.6万
  • 项目类别:
    Fellowship Award
Elucidation of the formation process of organic aerosols transported during long distances from Tuoji Island, China to Cape Hedo, Okinawa
阐明从中国托基岛到冲绳边户岬长距离输送的有机气溶胶的形成过程
  • 批准号:
    22K12358
  • 财政年份:
    2022
  • 资助金额:
    $ 64.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient Nearest Neighbour Search for Wasserstein Distances
Wasserstein 距离的高效最近邻搜索
  • 批准号:
    557558-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 64.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了