III: Small: Query-By-Sketch: Simplifying Video Clip Retrieval Through A Visual Query Paradigm

III:小:按草图查询:通过可视化查询范式简化视频剪辑检索

基本信息

  • 批准号:
    2335881
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

This project addresses the growing demand for analyzing movement patterns in videos across diverse applications such as sports analytics, wildlife tracking, urban planning, and autonomous vehicle development. For example, analyzing vehicle trajectories from surveillance videos is essential for improving traffic safety. This project introduces a novel method for querying movement patterns in videos, enabling users to sketch events of interest on a canvas. The main innovation lies in accurately and efficiently matching free-form sketches to real-world trajectories, overcoming challenges posed by ambiguous user intent and variations in perspective, orientation, and camera movements. Consider a user describing a left-turning vehicle event as a 90-degree angle from a top-down perspective; in practice, the turning angles may appear different on video due to varying camera positions relative to vehicles. The project will lead to an open-source video database featuring a sketch-based query interface, making the analysis of movement patterns in videos more accessible and accurate. Research findings will be disseminated through publications at top conferences and incorporated into new database courses at Georgia Tech, as well as research classes for Atlanta-area high school girls interested in pursuing computing careers. Video retrieval from trajectory queries has been explored by the database and machine learning communities using SQL-like and natural language interfaces, but they face limitations due to high query specification time or poor generalizability to unseen videos. This project seeks to address these challenges by introducing a novel visual query paradigm that enables users to sketch exploratory trajectory queries in video analytics through drag-and-drop actions. The project is structured around two research thrusts. The first focuses on developing a human-in-loop similarity search framework that leverages active-learning techniques to solicit user feedback. This process aims to clarify user intent in query specifications and address inaccuracies inherent in human sketching. Domain-specific knowledge will be incorporated as additional predicates in the pre-processing and post-processing stages of similarity search to further enhance retrieval efficiency and quality. The second thrust develops an end-to-end machine learning model that learns a robust similarity measure between user-drawn sketches and trajectories in real-world videos, accounting for variations in camera angles and movements. It will address the lack of diverse and labeled datasets for video retrieval from trajectory queries by developing a self-supervised learning framework based on trajectory simulation. Overall, this project will leverage database-style optimization to reduce both user effort and computational resources required for utilizing vision models in exploratory video analytics, which will help expand the adoption of video analytics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目满足了在体育分析、野生动物跟踪、城市规划和自动驾驶汽车开发等不同应用中分析视频运动模式日益增长的需求。例如,从监控视频中分析车辆轨迹对于提高交通安全至关重要。该项目引入了一种查询视频中运动模式的新颖方法,使用户能够在画布上勾勒出感兴趣的事件。主要创新在于准确有效地将自由形式的草图与现实世界的轨迹相匹配,克服了用户意图模糊以及视角、方向和相机运动变化带来的挑战。考虑用户将左转车辆事件描述为从自上而下的角度看成 90 度角;实际上,由于摄像机相对于车辆的位置不同,转向角度在视频中可能会出现不同。该项目将推出一个开源视频数据库,该数据库具有基于草图的查询界面,使视频中的运动模式分析更加容易和准确。研究结果将通过顶级会议上的出版物进行传播,并纳入佐治亚理工学院的新数据库课程以及为亚特兰大地区有志于从事计算机职业的高中女生开设的研究课程。数据库和机器学习社区已经使用类似 SQL 和自然语言接口探索了轨迹查询的视频检索,但由于查询规范时间长或对未见过的视频的通用性较差,它们面临着局限性。该项目旨在通过引入一种新颖的视觉查询范例来解决这些挑战,该范例使用户能够通过拖放操作在视频分析中绘制探索性轨迹查询。该项目围绕两个研究重点构建。第一个重点是开发一个人机循环相似性搜索框架,该框架利用主动学习技术来征求用户反馈。此过程旨在澄清查询规范中的用户意图并解决人类草图固有的不准确性。特定领域的知识将作为附加谓词纳入相似性搜索的预处理和后处理阶段,以进一步提高检索效率和质量。第二个重点开发了一种端到端的机器学习模型,该模型可以学习用户绘制的草图和现实视频中的轨迹之间强大的相似性度量,并考虑摄像机角度和运动的变化。它将通过开发基于轨迹模拟的自监督学习框架来解决轨迹查询视频检索中缺乏多样化和标记数据集的问题。总体而言,该项目将利用数据库式优化来减少在探索性视频分析中利用视觉模型所需的用户工作量和计算资源,这将有助于扩大视频分析的采用。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kexin Rong其他文献

ASAP: Prioritizing Attention via Time Series Smoothing
ASAP:通过时间序列平滑优先考虑注意力
  • DOI:
    10.14778/3137628.3137645
  • 发表时间:
    2017-03-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kexin Rong;Peter D. Bailis
  • 通讯作者:
    Peter D. Bailis
Falcon: Fair Active Learning using Multi-armed Bandits
Falcon:使用多臂强盗进行公平主动学习
  • DOI:
    10.48550/arxiv.2401.12722
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ki Hyun Tae;Hantian Zhang;Jaeyoung Park;Kexin Rong;Steven Euijong Whang
  • 通讯作者:
    Steven Euijong Whang
Interactive Demonstration of EVA
EVA互动演示
  • DOI:
    10.14778/3611540.3611626
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaurav Tarlok Kakkar;Aryan Rajoria;Myna Prasanna Kalluraya;Ashmita Raju;Jiashen Cao;Kexin Rong;Joy Arulraj
  • 通讯作者:
    Joy Arulraj
SketchQL Demonstration: Zero-shot Video Moment Querying with Sketches
SketchQL 演示:使用草图进行零镜头视频时刻查询
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Renzhi Wu;Pramod Chunduri;Dristi J Shah;Ashmitha Julius Aravind;Ali Payani;Xu Chu;Joy Arulraj;Kexin Rong
  • 通讯作者:
    Kexin Rong
Treatment of high strength acidic wastewater using passive pH control
采用被动 pH 控制处理高浓度酸性废水
  • DOI:
    10.1016/j.jwpe.2017.06.014
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Lamichhane;Ken Lewis;Kexin Rong;R. Babcock;M. Cooney
  • 通讯作者:
    M. Cooney

Kexin Rong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III: Small: RUI: Designing Structure-Phenotype Query-Retrieval and Analysis Systems for Microscopy-Based Whole Organism Studies
III:小:RUI:为基于显微镜的整个生物体研究设计结构表型查询检索和分析系统
  • 批准号:
    2401096
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
III: Small: Bringing database query optimization to data intensive applications
III:小型:将数据库查询优化引入数据密集型应用程序
  • 批准号:
    2008295
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
III: Small: COMPASS: Online Sketch-based Query Optimization for In-Memory Databases
III:小:COMPASS:内存数据库基于草图的在线查询优化
  • 批准号:
    2008815
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
III: Small: Native Compilation, Query Processing, and Indexing for In-memory Graph Relational Data Systems
III:小:内存图关系数据系统的本机编译、查询处理和索引
  • 批准号:
    1910216
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
III:Small: Optimal Query Processing meets Information Theory: from Proofs to Algorithms
III:Small:最优查询处理遇到信息论:从证明到算法
  • 批准号:
    1907997
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了