Characterizing Transition to Turbulence in Pulsatile Pipe Flow
表征脉动管流中的湍流转变
基本信息
- 批准号:2335760
- 负责人:
- 金额:$ 32.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Transitional and turbulent pulsatile flows have been observed in a variety of applications including biomedical flows such as flow through the heart, aorta, and brain. Transitional flow causes significant fluctuations in flow parameters such as pressure and wall shear stress, which can precipitate major practical consequences. For example, these fluctuations can accelerate the progression of vascular diseases including heart disease, stenoses, etc.; additionally, they can weaken materials to failure, i.e., expediting the rupture of aneurysms. Thus, to accurately evaluate these biomedical conditions, it is important to consider and quantify the role of transitional flow effects. Unfortunately, transition to turbulence in pulsatile flows remains a poorly understood flow regime. As a result, current studies most often ignore the effects of transitional flow. Therefore, the principal aim of this project is to provide a fundamental understanding of the pulsatile transitional flow regime as well as build universal tools capable of estimating its functional effects. This project will also focus on expanding training and educational resources related to experimental fluid dynamic methodologies. Additionally, the vast amount of experimental data collected through this project will be made publicly available and used to establish a globally accessible repository of difficult-to-obtain experimental transitional and turbulent flow data.The goal of this project is to establish fundamental knowledge regarding the mechanisms that drive transition in pulsatile pipe flow as well as develop first-of-their-kind tools capable of estimating intermittency and transition progression. To date, studies exploring this flow regime have been limited to one-off contributions and produced contradictory findings. The lack of consensus and understanding of this flow regime has increasingly led to biomedical studies controversially asserting flows with mean Reynolds numbers as low as 250 as being transitional in nature. This punctuates the urgency of addressing the critical knowledge gap in this domain. This project delivers on this need using a rigorous series of experimental particle tracking velocimetry (PTV) studies. The project will focus on three specific aims: (i) Investigate the role of axial flow factors including frequency of pulsation and input pulsatile waveform shape on transition to turbulence; (ii) Assess how the onset and development of transition to turbulence is sensitive to radial-flow instabilities such as pipe curvature or cross-sectional area occlusions or expansions; (iii) Develop analysis tools to estimate intermittency, transition progression, and expected fluctuation levels of key flow parameters (e.g., pressure) for any arbitrary flow. This effort will represent the first comprehensive suite of experimental studies in this domain as well as the first experimental studies to jointly and parametrically evaluate axial and radial flow factors that affect pulsatile transition. This project is expected to dramatically advance the current understanding of pulsatile transitional flow as well as establish translatable tools to enable future studies to quantify the presence and effects of this flow regime in any application area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在多种应用中都观察到了过渡和湍流脉动流,包括生物医学流,例如流经心脏、主动脉和大脑的流。过渡流会导致压力和壁面剪切应力等流动参数发生显着波动,从而导致重大的实际后果。例如,这些波动可以加速血管疾病的进展,包括心脏病、狭窄等;此外,它们还可以削弱材料直至失效,即加速动脉瘤的破裂。因此,为了准确评估这些生物医学条件,考虑和量化过渡流动效应的作用非常重要。不幸的是,脉动流向湍流的转变仍然是一个知之甚少的流态。因此,当前的研究通常忽略过渡流的影响。因此,该项目的主要目的是提供对脉动过渡流态的基本了解,并构建能够估计其功能效果的通用工具。该项目还将重点扩大与实验流体动力学方法相关的培训和教育资源。此外,通过该项目收集的大量实验数据将公开,并用于建立一个全球可访问的难以获得的实验过渡和湍流数据存储库。该项目的目标是建立有关以下方面的基础知识:驱动脉动管流转变的机制,以及开发能够估计间歇性和转变进程的首创工具。迄今为止,探索这种流动状态的研究仅限于一次性贡献,并产生了相互矛盾的发现。对这种流动状态缺乏共识和理解,越来越多的生物医学研究有争议地断言平均雷诺数低至 250 的流动本质上是过渡性的。这凸显了解决该领域关键知识差距的紧迫性。该项目通过一系列严格的实验粒子跟踪测速 (PTV) 研究满足了这一需求。该项目将重点关注三个具体目标:(i)研究轴流因素(包括脉动频率和输入脉动波形形状)对湍流过渡的作用; (ii) 评估向湍流过渡的开始和发展如何对径向流不稳定性(例如管道曲率或横截面积闭塞或膨胀)敏感; (iii) 开发分析工具来估计任意流量的间歇性、过渡进程和关键流量参数(例如压力)的预期波动水平。这项工作将代表该领域的第一个综合实验研究,以及第一个联合参数化评估影响脉动转变的轴向和径向流动因素的实验研究。该项目预计将极大地推进目前对脉动过渡流的理解,并建立可翻译工具,使未来的研究能够量化这种流态在任何应用领域的存在和影响。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Brindise其他文献
Melissa Brindise的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
过渡元素和稀土元素共掺杂Ni-Mn-Sn合金定向凝固组织控制及高弹卡制冷疲劳寿命机理研究
- 批准号:52301014
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超低温高比能全液相锂硫电池多级结构硫正极的构筑及其过渡态演化机制研究
- 批准号:52302270
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
稀土/过渡金属掺杂六角相ZnS纳米晶可控合成、力致发光机理及传感应用研究
- 批准号:12374371
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
过渡金属离子掺杂p区金属硫属化合物调控CO2电还原途径高效产乙醇
- 批准号:22375007
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
低带隙双过渡金属四元硫化物的设计合成及其光电性质研究
- 批准号:22301168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Transition to turbulence in jet flows
射流向湍流的转变
- 批准号:
564284-2021 - 财政年份:2021
- 资助金额:
$ 32.17万 - 项目类别:
University Undergraduate Student Research Awards
Transition to turbulence in jet flows
射流向湍流的转变
- 批准号:
564284-2021 - 财政年份:2021
- 资助金额:
$ 32.17万 - 项目类别:
University Undergraduate Student Research Awards
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2021
- 资助金额:
$ 32.17万 - 项目类别:
Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2021
- 资助金额:
$ 32.17万 - 项目类别:
Discovery Grants Program - Individual
CBET-EPSRC: Transition and Turbulence in Compressible Boundary Layers Subjected to Concave Surface Curvature
CBET-EPSRC:受凹面曲率影响的可压缩边界层中的转变和湍流
- 批准号:
EP/T01167X/1 - 财政年份:2021
- 资助金额:
$ 32.17万 - 项目类别:
Research Grant