Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science

合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学

基本信息

项目摘要

The number of catastrophic wildfires in the United States has been steadily increasing in recent decades, which generate casualties, large loss of properties, and dramatic environmental changes. However, it is difficult to make accurate predictions of wildland fire spread in real time for firefighters and emergency response teams. Although many fire spread models have been developed, one of the biggest challenges in their operational use is the lack of ground truth fire data at high spatiotemporal resolutions, which are indispensable for model evaluation and improvements. The objective of this planning project is to bring together wildland fire science researchers, fire sensing and data science experts, and diverse stakeholders to develop standards and requirements for high-spatiotemporal-resolution wildland fire sensing and digital twin construction. An organizing committee will be formed from wildland fire science, engineering, and stake holder communities including fire ecology and behavior modeling, pollution monitoring, robotics, cyber physical systems (CPS), wildfire fighting, indigenous cultural burns, and prescribed fires. A series of physical and remote workshops will be held focusing on themes such as open fire data for wildland fire modeling validation, digital twins for prescribed fires, and safe and efficient wildland fire data collection. Research tasks of this planning project include: 1) identification of key high-spatiotemporal-resolution fire metrics and data representations to support fire model validation and fire operations, 2) proposition of sensing strategies and algorithms for fire sensing and suppression robots and cyber physical systems that can support safe and efficient collection of desired high-resolution fire data, 3) development and evaluation of data assimilation and digital twin construction using high-resolution data to advance fire behavior modeling, coupled fire-atmosphere modeling, and smoke modeling, and 4) prototype and initial fire data ecosystem demonstration including collection of cultural burn data and establishment of GeoFireData, a benchmark fire data sharing and digital twin website, which can support different fire operation types such as fire spread model validation and controlled burn planning. The special attention will be devoted to interdisciplinary training of the next generation of scientists working with wildfire risks at the interface of computational sciences, engineering, ecology, and data sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近几十年来,美国灾难性野火的数量不断增加,造成人员伤亡、大量财产损失和巨大的环境变化。然而,消防员和应急响应团队很难实时准确预测荒地火灾蔓延情况。尽管已经开发了许多火灾蔓延模型,但其操作使用中最大的挑战之一是缺乏高时空分辨率的地面真实火灾数据,而这对于模型评估和改进是必不可少的。该规划项目的目标是汇集荒地火灾科学研究人员、火灾传感和数据科学专家以及不同的利益相关者,制定高时空分辨率荒地火灾传感和数字孪生建设的标准和要求。一个组织委员会将由荒地火灾科学、工程和利益相关者社区组成,包括火灾生态和行为建模、污染监测、机器人、网络物理系统(CPS)、野火扑救、土著文化烧伤和规定火灾。将举办一系列实体和远程研讨会,重点讨论用于荒地火灾建模验证的明火数据、规定火灾的数字孪生以及安全高效的荒地火灾数据收集等主题。 该规划项目的研究任务包括:1)识别关键的高时空分辨率火灾指标和数据表示,以支持火灾模型验证和火灾行动,2)提出火灾传感和灭火机器人以及网络物理系统的传感策略和算法可以支持安全有效地收集所需的高分辨率火灾数据,3)使用高分辨率数据开发和评估数据同化和数字孪生构建,以推进火灾行为建模、火灾-大气耦合建模和烟雾建模,以及4 )原型和初步的火灾数据生态系统演示包括收集文化燃烧数据和建立基准火灾数据共享和数字孪生网站GeoFireData,该网站可以支持不同的火灾操作类型,例如火灾蔓延模型验证和受控燃烧规划。该奖项将特别关注对计算科学、工程学、生态学和数据科学领域从事野火风险研究的下一代科学家进行跨学科培训。该奖项反映了 NSF 的法定使命,并通过使用评估方法进行评估,认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaolin Hu其他文献

UAV Path Planning for Wildfire Tracking Using Partially Observable Markov Decision Process
使用部分可观察马尔可夫决策过程进行野火跟踪的无人机路径规划
  • DOI:
    10.2514/6.2021-1677
  • 发表时间:
    2020-01-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Poorya Shobeiry;M. Xin;Xiaolin Hu;Haiyang Chao
  • 通讯作者:
    Haiyang Chao
Panel discussion: What makes good research in modeling and simulation: Sustaining the growth and vitality of the M&S discipline
小组讨论:什么是建模和仿真的良好研究:维持 M 的增长和活力
  • DOI:
    10.1109/wsc.2008.4736129
  • 发表时间:
    2008-12-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Yilmaz;P. Davis;P. Fishwick;Xiaolin Hu;J. Miller;Maria Hybinette;T. Ören;P. Reynolds;H. Sarjoughian;A. Tolk
  • 通讯作者:
    A. Tolk
Enhancing In-Context Learning Performance with just SVD-Based Weight Pruning: A Theoretical Perspective
仅通过基于 SVD 的权重修剪来提高情境学习性能:理论视角
  • DOI:
    10.48550/arxiv.2406.03768
  • 发表时间:
    2024-06-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinhao Yao;Xiaolin Hu;Shenzhi Yang;Yong Liu
  • 通讯作者:
    Yong Liu
On the Privacy Effect of Data Enhancement via the Lens of Memorization
从记忆的角度论数据增强的隐私效应
Hybrid agent-based and graph-based modeling for building occupancy simulation
用于建筑占用模拟的基于代理和基于图形的混合建模

Xiaolin Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaolin Hu', 18)}}的其他基金

SCC-IRG Track 1: Smart and Safe Prescribed Burning for Rangeland and Wildland Urban Interface Communities
SCC-IRG 第 1 轨道:牧场和荒地城市界面社区的智能、安全规定燃烧
  • 批准号:
    2306603
  • 财政年份:
    2023
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
SCC-IRG Track 1: Smart and Safe Prescribed Burning for Rangeland and Wildland Urban Interface Communities
SCC-IRG 第 1 轨道:牧场和荒地城市界面社区的智能、安全规定燃烧
  • 批准号:
    2306603
  • 财政年份:
    2023
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
SCC-PG: Smart and Safe Prescribed Burning for Rangeland and Farmland Communities
SCC-PG:牧场和农田社区的智能、安全规定燃烧
  • 批准号:
    2125361
  • 财政年份:
    2021
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
Collaborative Learning in Cloud-based Virtual Computer Labs
基于云的虚拟计算机实验室中的协作学习
  • 批准号:
    1712384
  • 财政年份:
    2017
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Portable, Modular, Modern Technology Infused Courseware for Broader Embedded System Education
协作研究:便携式、模块化、融入现代技术的课件,用于更广泛的嵌入式系统教育
  • 批准号:
    0942140
  • 财政年份:
    2010
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
CAREER: Large-scale Spatial Temporal Data Driven Simulation with Sequential Monte Carlo Methods
职业:使用顺序蒙特卡罗方法进行大规模时空数据驱动仿真
  • 批准号:
    0841170
  • 财政年份:
    2009
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II--Integrated Weather and Wildfire Simulation and Optimization for Wildfire Management
合作研究:CDI-Type II——天气与野火综合模拟及野火管理优化
  • 批准号:
    0941432
  • 财政年份:
    2009
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
CSR-CSI: System Integration of Dynamical Data Driven Wildfire Spread and Firefighting Modeling, Simulation, and Optimization
CSR-CSI:动态数据驱动的野火蔓延和消防建模、仿真和优化的系统集成
  • 批准号:
    0720675
  • 财政年份:
    2007
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant

相似国自然基金

寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
  • 批准号:
    52378051
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于稀疏优化的冗余机器人低能耗及容噪运动规划研究
  • 批准号:
    62363012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
混合转向线控底盘全地形无人车高机动运动规划与控制研究
  • 批准号:
    52372394
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
复杂环境下的水下三维路径规划方法研究
  • 批准号:
    62371405
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向重大灾情精准调查的随机无人机路径规划问题研究
  • 批准号:
    72304049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Conference: Conference support for the 2nd RAID Science Planning Workshop
协作研究:会议:对第二届 RAID 科学规划研讨会的会议支持
  • 批准号:
    2348964
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Inverse Task Planning from Few-Shot Vision Language Demonstrations
协作研究:基于少镜头视觉语言演示的逆向任务规划
  • 批准号:
    2327973
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Inverse Task Planning from Few-Shot Vision Language Demonstrations
协作研究:基于少镜头视觉语言演示的逆向任务规划
  • 批准号:
    2327973
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了