Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
基本信息
- 批准号:2334970
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Structure, Dynamics, and Mechanisms A (CSDM-A) program in the Division of Chemistry, Matthew Montemore of Tulane University and Charles Sykes of Tufts University are performing computational and experimental investigations of a novel class of dual-atom catalysts using quantum chemistry, machine learning, and atomic-scale characterization. These novel materials, termed dual-atom alloys, consist of an energetically stable pair of different metal atoms embedded in the surface of a host metal. Compared to single-atom alloys, a similar class of materials with well-defined active sites, dual-atom alloy active sites are anticipated to be more reactive and enable more challenging reactions including targeted bond scission. However, accelerating the discovery of novel alloys requires addressing numerous challenges including identifying promising combinations of metals from the large materials space of potential pairings, understanding their structure/function relationships, and creating an effective feedback loop between experiment and computation. Dr. Montemore and his students will use machine learning combined with density functional theory (DFT) to identify candidate structures based on surface stability and low energy barriers for specific chemical reactions. Dr. Sykes and his students will experimentally synthesize, characterize, and test the predicted structures. Their discoveries could lead to the development of an entirely new class of catalysts where well-defined metal atomic structures can be combined with predictive models to accelerate a range of multistep reaction mechanisms. In addition to these broad scientific impacts, this project will also support a virtual reality K-12 outreach workshop, provide mentorship for Hispanic scientists and engineers, and inspire students from underserved high schools by facilitating a Reverse Science Fair.Dual-atom alloys leverage several of the advantages of single-atom alloys: a well-defined active site that allows clear correspondence across computation, surface science, and reactor studies; opportunities to deviate from linear correlations in reaction energetics; and unique electronic structure. Just as with single-atom alloys, in which surface science experiments and computation preceded catalyst synthesis and testing, Montemore and Sykes will couple theory and surface science experiments to explore dual-atom alloy structure-reactivity space. This research is expected to lead to the development of structure-function relationships on a broad set of well-defined active sites, which would then serve as a guide to the larger heterogenous catalysis community. Furthermore, these studies have the potential to uncover new classes of materials with high catalytic performance, a particular need for reactions that are challenging with traditional heterogeneous catalysts, such as selective cross-couplings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理 A (CSDM-A) 项目的支持下,杜兰大学的 Matthew Montemore 和塔夫茨大学的 Charles Sykes 正在对一类新型双原子催化剂进行计算和实验研究使用量子化学、机器学习和原子尺度表征。这些新型材料被称为双原子合金,由嵌入基质金属表面的一对能量稳定的不同金属原子组成。与单原子合金(具有明确活性位点的类似材料)相比,双原子合金活性位点预计更具反应性,并且能够实现更具挑战性的反应,包括目标键断裂。 然而,加速新型合金的发现需要解决众多挑战,包括从潜在配对的大材料空间中识别有前途的金属组合,了解它们的结构/功能关系,以及在实验和计算之间创建有效的反馈循环。 Montemore 博士和他的学生将利用机器学习与密度泛函理论 (DFT) 相结合,根据特定化学反应的表面稳定性和低能垒来识别候选结构。赛克斯博士和他的学生将通过实验合成、表征和测试预测的结构。他们的发现可能会导致开发出一种全新的催化剂,其中明确的金属原子结构可以与预测模型相结合,以加速一系列多步反应机制。除了这些广泛的科学影响之外,该项目还将支持虚拟现实 K-12 外展研讨会,为西班牙裔科学家和工程师提供指导,并通过促进逆向科学博览会来激励来自服务不足的高中的学生。单原子合金的优点:明确的活性位点,可以在计算、表面科学和反应堆研究之间实现清晰的对应;偏离反应能量学线性相关性的机会;和独特的电子结构。正如单原子合金中表面科学实验和计算先于催化剂合成和测试一样,蒙特莫尔和赛克斯将理论和表面科学实验结合起来,探索双原子合金的结构-反应空间。这项研究预计将导致在一系列明确的活性位点上发展结构-功能关系,从而为更大的异质催化群体提供指导。此外,这些研究有可能发现具有高催化性能的新型材料,特别需要对传统多相催化剂具有挑战性的反应,例如选择性交叉偶联。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Sykes其他文献
Charles Sykes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Sykes', 18)}}的其他基金
Collaborative Research: Structure Sensitive Surface Chemistry - Small Molecule Activation and Spillover
合作研究:结构敏感表面化学-小分子活化和溢出
- 批准号:
2102140 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Structure Sensitive Surface Chemistry - Enantioselectivity on Chiral Surfaces
合作研究:结构敏感表面化学 - 手性表面的对映选择性
- 批准号:
1764270 - 财政年份:2018
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Understanding and Controlling Coupled Molecular Motion on Surfaces
理解和控制表面上的耦合分子运动
- 批准号:
1708397 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
New methods for controlling molecular motion on surfaces
控制表面分子运动的新方法
- 批准号:
1412402 - 财政年份:2014
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: High Throughput Structure Sensitive Surface Chemistry
合作研究:高通量结构敏感表面化学
- 批准号:
1012307 - 财政年份:2010
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: Investigating and Controlling Molecular Rotation on Surfaces
职业:研究和控制表面分子旋转
- 批准号:
0844343 - 财政年份:2009
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: The Structure and Chemistry of Naturally Chiral Metal Surfaces
合作研究:天然手性金属表面的结构和化学
- 批准号:
0717978 - 财政年份:2007
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似国自然基金
电阻型超导限流器失超过程激增气泡对液氮绝缘击穿特性影响规律研究
- 批准号:51907153
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
随机树理论在分枝过程研究中的应用
- 批准号:11671041
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
基于Quench-Back保护的超导螺线管磁体失超过程数值模拟研究
- 批准号:51307073
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
安徽南大别超高压榴辉岩和片麻岩的相平衡研究
- 批准号:40972039
- 批准年份:2009
- 资助金额:50.0 万元
- 项目类别:面上项目
超过程及相关SPDE的研究
- 批准号:10871103
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301407 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301406 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301405 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301409 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant