CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
基本信息
- 批准号:2334449
- 负责人:
- 金额:$ 59.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Advances in wireless communications and low-cost computing devices have enabled a proliferation of large distributed networks of data collection systems, constituting a major component of the emergent Internet of Things (IoT), Intelligent Transportation Systems (ITS), and the Smart Grid (SG) . Complementing these advances is the significant progress in decentralized optimization software that enables the basic functionalities of such distributed networked systems, including cooperative control, network information fusion, network coordination, and distributed data mining/learning. However, information sharing over such large networks creates vulnerabilities and concerns about privacy, which can be especially acute in privacy-sensitive applications such as smart metering and connected vehicle networks. Differential privacy is the most widely used protective mechanism for privacy due to its simplicity, scalability, and strong resilience against attempts to recover sensitive information from post-processed data. However, all existing differential-privacy solutions for decentralized optimization face the dilemma of how to achieve data privacy protection by compromising the optimizer's speed of convergence rather than its accuracy. This project leverages on the PI’s recent discovery that it is possible to achieve differential privacy guarantees without compromising utility by leveraging on the optimizer's speed of convergence rather than its accuracy. Specifically, the project will establish theoretical and algorithmic foundations for the problem of ensuring differential privacy in decentralized optimization without losing provable optimality. In addition to broadly enabling more effective privacy protections for decentralized networks, the project will impact education by enriching the current curriculum on control and networked systems, and training undergraduate and graduate students in interdisciplinary information privacy research and its applications. This project will establish theoretical and algorithmic foundations for ensuring differential privacy in decentralized optimization algorithms without losing provable optimality. The main research thrusts are to: (1) Investigate the sacrifice in convergence speed in differentially private decentralized optimization with provable optimality using an information-theoretic approach; (2) Explore and establish differential privacy without losing provable optimality in decentralized online optimization, where data are not pre-collected before implementing the algorithm but rather are acquired in a sequential manner; (3) Explore and establish differential privacy without losing probable optimality in decentralized optimization algorithms subject to shared coupling constraints among participating agents’ decision variables; (4) Explore and establish differential privacy in decentralized Nash games (which are essentially decentralized optimization problems with noncooperative agents) without losing provable optimality; (5) Evaluate obtained results using numerical simulations as well as experiments on real-word distributed systems in smart grids and networked intelligent vehicles. This project is jointly funded by Core Program of the Computing and Communication Foundations Division (CCF) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线通信和低成本计算设备的进步使得大型分布式数据收集系统网络激增,构成新兴物联网 (IoT)、智能交通系统 (ITS) 和智能电网 (SG) 的主要组成部分与这些进步相辅相成的是去中心化优化软件的重大进步,它实现了此类分布式网络系统的基本功能,包括协作控制、网络信息融合、网络协调和分布式数据挖掘/学习。差异隐私由于其简单性、可扩展性和针对尝试的强大弹性而成为最广泛使用的隐私保护机制。然而,所有现有的去中心化优化的差分隐私解决方案都面临着如何通过损害优化器的收敛速度而不是其准确性来实现数据隐私保护的困境。 PI 最近发现,通过利用优化器的收敛速度而不是准确性,可以在不影响效用的情况下实现差分隐私保证。具体来说,该项目将为去中心化优化中确保差分隐私而不丢失的问题奠定理论和算法基础。除了广泛地为去中心化网络提供更有效的隐私保护外,该项目还将通过丰富当前的控制和网络系统课程以及对本科生和研究生进行跨学科信息隐私培训来影响教育。该项目将为确保去中心化优化算法中的差分隐私而不失去可证明的最优性奠定理论和算法基础,主要研究重点是:(1)研究具有可证明的最优性的差分隐私去中心化优化中收敛速度的牺牲。使用信息论方法;(2)在去中心化在线优化中探索和建立差分隐私,而不会失去可证明的最优性,其中数据不是在实现算法之前预先收集的,而是在算法中获取的。 (3) 探索和建立受参与主体决策变量之间共享耦合约束的去中心化优化算法的差分隐私(本质上是去中心化优化问题); (5)利用数值模拟以及智能电网和网络智能汽车中的实际分布式系统的实验来评估所获得的结果。该项目由计算和网络核心计划联合资助。通信基金会部门 (CCF) 和刺激竞争性研究既定计划 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongqiang Wang其他文献
Synthetic Fault Diagnosis Method of Power Transformer Based on Rough Set Theory and Bayesian Network
基于粗糙集理论和贝叶斯网络的电力变压器综合故障诊断方法
- DOI:
10.1007/978-3-540-87734-9_57 - 发表时间:
2008-09-24 - 期刊:
- 影响因子:0
- 作者:
Yongqiang Wang;F. Lu;Heming Li - 通讯作者:
Heming Li
Research on the operation of cascade reservoirs combined navigation part I: Concept and framework of distributed transport system coupled land and water
梯级水库联航调度研究第一部分:水陆耦合分布式交通系统概念与框架
- DOI:
10.1360/n092015-00057 - 发表时间:
2015-10-22 - 期刊:
- 影响因子:0
- 作者:
D. Zhong;Yongqiang Wang;Baosheng Wu;Kejing Liu;Guangqian Wang - 通讯作者:
Guangqian Wang
Study on cutting force calculation and optimization strategy of machining spiral bevel gear by using forming method
成形法加工弧齿锥齿轮切削力计算及优化策略研究
- DOI:
10.1299/jamdsm.2024jamdsm0013 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Zhen Wang;Chuang Jiang;Bingyang Wei;Yongqiang Wang;Bo Zhang - 通讯作者:
Bo Zhang
Improving crop model accuracy in the development of regional irrigation and nitrogen schedules by using data assimilation and spatial clustering algorithms
通过使用数据同化和空间聚类算法提高区域灌溉和施氮计划制定中作物模型的准确性
- DOI:
10.1016/j.agwat.2023.108645 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:6.7
- 作者:
Yongqiang Wang;Kexin Sun;Yunhe Gao;Ruizhe Liu;Hongzheng Shen;Xuguang Xing;Xiaoyi Ma - 通讯作者:
Xiaoyi Ma
A FR4‐based compact VCO with wide tuning range using SISL transformed triple‐tanks
基于 FR4 的紧凑型 VCO,具有宽调谐范围,使用 SISL 改造的三重坦克
- DOI:
10.1049/ell2.12251 - 发表时间:
2021-06-22 - 期刊:
- 影响因子:1.1
- 作者:
Hai;Kaige Ma;Kaixue Ma;Yongqiang Wang - 通讯作者:
Yongqiang Wang
Yongqiang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongqiang Wang', 18)}}的其他基金
CIF: Small: Deep Stochasticity for Private Collaborative Deep Learning
CIF:小:私人协作深度学习的深度随机性
- 批准号:
2215088 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
- 批准号:
2219487 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Harnessing Intrinsic Dynamics for Inherently Privacy-preserving Decentralized Optimization
合作研究:CIF:中:利用内在动力学实现固有隐私保护的去中心化优化
- 批准号:
2106293 - 财政年份:2021
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
Encrypted control for privacy-preserving and secure cyber-physical systems
隐私保护和安全网络物理系统的加密控制
- 批准号:
1912702 - 财政年份:2019
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
EAGER: Control Theory for Real-time Privacy-preserving Consensus Control of Engineering Networks
EAGER:工程网络实时隐私保护共识控制的控制理论
- 批准号:
1824014 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CICI: RSARC: Secure Time for Cyberinfrastructure Security
CICI:RSARC:网络基础设施安全的安全时间
- 批准号:
1738902 - 财政年份:2017
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
STTR Phase I: Eco-Friendly Mass Production of Highly Conductive Graphene Sheets with Controlled Structures
STTR第一阶段:结构可控的高导电石墨烯片的环保大规模生产
- 批准号:
1346496 - 财政年份:2014
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
STTR Phase I: Surface- and Structural Engineering of Colloidal Quantum Dots Towards Efficient and
STTR 第一阶段:胶体量子点的表面和结构工程,以实现高效和
- 批准号:
1010491 - 财政年份:2010
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
STTR Phase I: Magnetic Nanoparticle Microfluidics for High Efficient Capture, Separation and Concetration of Foodborne Pathogens
STTR 第一阶段:用于高效捕获、分离和浓缩食源性病原体的磁性纳米颗粒微流体
- 批准号:
0810626 - 财政年份:2008
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
SBIR Phase II: Development of Cadmium-Free, Water-Soluble and Multicolor Quantum Dots by Chemical Doping
SBIR 第二阶段:通过化学掺杂开发无镉、水溶性和多色量子点
- 批准号:
0823040 - 财政年份:2008
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CNS Core: Small: Ensuring Privacy by Runtime Analog Sanitization of Solid State Storage Devices
CNS 核心:小型:通过固态存储设备的运行时模拟清理确保隐私
- 批准号:
2403540 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Ensuring medication ingestion without altering existing medication regimen
确保药物摄入而不改变现有的药物治疗方案
- 批准号:
10384824 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Collaborative Research: RI: Small: Post hoc Explanations in the Wild: Exposing Vulnerabilities and Ensuring Robustness
合作研究:RI:小型:事后解释:暴露漏洞并确保稳健性
- 批准号:
2008461 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CNS Core: Small: Ensuring Privacy by Runtime Analog Sanitization of Solid State Storage Devices
CNS 核心:小型:通过固态存储设备的运行时模拟清理确保隐私
- 批准号:
2007403 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Post hoc Explanations in the Wild: Exposing Vulnerabilities and Ensuring Robustness
合作研究:RI:小型:事后解释:暴露漏洞并确保稳健性
- 批准号:
2008956 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant