Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations

通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展

基本信息

  • 批准号:
    2333837
  • 负责人:
  • 金额:
    $ 52.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Prior to volcanic eruptions magma rises through the crust, most commonly within narrow fractures known as “dikes.” Dike ascent is often accompanied by small earthquakes and deformation of the ground surface which can be detected by ground-based, and in some cases space-based sensors. Not all dikes lead to eruptions; in some cases, they stall and the magma solidifies without erupting. To properly interpret seismic and deformation signals and provide societally-relevant eruption warnings, we must understand the physical and chemical processes that control how rapidly dikes ascend, the paths they take, and whether or not they make it to the surface. These processes include resistance and motion of the solid rock outside the dike, the flow of magma within the dike, fracture of the crust at the dike tip, and possible solidification of the magma as it cools during its journey toward the surface - all of which are interdependent. Segall, Lew, and their team will use sophisticated computational techniques together with ground deformation and earthquake data to model dike ascent in Hawaii, and to develop guidelines for using such data to forecast eruptions in Hawaii and at similar volcanoes worldwide. This research will address one of the Grand Challenges in the National Academies ERUPT report to advance physics-based eruption forecasting. Accurate, high-fidelity models of dike propagation are key to understanding precursors to many eruptions and will ultimately facilitate forecasting at volcano observatories worldwide.This project will leverage advances in computational methods that allow the numerical grid to adapt to the changing shape of the dike as it grows. These and other advances will allow them to address: the conditions (magma viscosity, background temperature gradient, reservoir pressure, volume, and compressibility) that permit a dike to reach the earth's surface; the time-dependent surface deformations and seismicity-inducing stress perturbations that could be used in physics-based eruption forecasting; and the factors that determine whether deep dikes are focused toward or bypass crustal reservoirs. Computed dike ascent histories and predicted surface deformation will be compared to observations of deformation and seismicity that precedes some eruptions, as well as with laboratory analog experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在火山喷发之前,岩浆会穿过地壳上升,最常见的是在被称为“岩脉”的狭窄裂缝内。并非所有岩堤都会导致喷发;在某些情况下,它们会停滞并且岩浆会凝固而不会喷发,从而正确解释地震和变形信号并提供与社会相关的喷发。警告,我们必须了解控制堤坝上升速度的物理和化学过程、它们所采取的路径以及它们是否到达地表这些过程包括堤坝外固体岩石的阻力和运动、水流的流动。岩脉内的岩浆、岩脉尖端地壳的破裂,以及岩浆在流向地表过程中冷却时可能发生的凝固——所有这些都是相互依赖的,Segall、Lew 和他们的团队将使用复杂的计算技术。地面变形与地震这项研究将解决国家科学院 ERUPT 报告中的重大挑战之一,以推进基于物理的喷发预测。准确、高保真度的堤坝传播模型是了解许多火山喷发前兆的关键,并将有助于全球火山观测站的最终预测。该项目将利用计算方法的进步,使数值网格能够适应这些和其他进步将使他们能够解决:允许岩浆到达地球表面的条件(岩浆粘度、背景温度梯度、储层压力、体积和压缩性);可用于基于物理的喷发预测的随时间变化的表面变形和地震诱发的应力扰动;以及确定深岩脉是否集中于或绕过地壳储层的因素。预测的地表变形将与一些喷发前的变形和地震活动的观测结果以及实验室模拟实验进行比较。该奖项授予 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Segall其他文献

Stress-driven recurrence and precursory moment-rate surge in caldera collapse earthquakes
火山口塌陷地震中应力驱动的复发和前兆矩率激增
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    18.3
  • 作者:
    Paul Segall;Mark V. Matthews;D. Shelly;Taiyi A. Wang;K. Anderson
  • 通讯作者:
    K. Anderson
Deep Learning Forecasts Caldera Collapse Events at Kilauea Volcano
深度学习预测基拉韦厄火山火山口崩塌事件
  • DOI:
    10.48550/arxiv.2404.19351
  • 发表时间:
    2024-04-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. McBrearty;Paul Segall
  • 通讯作者:
    Paul Segall
Modeling dike trajectories in a biaxial stress field with coupled magma flow, fracture, and elasticity
在耦合岩浆流、断裂和弹性的双轴应力场中模拟岩脉轨迹
  • DOI:
    10.1007/s00445-024-01734-8
  • 发表时间:
    2024-04-27
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    L. Blackstone;Benjamin E. Grossman‐Ponemon;E. Heimisson;Adrian J. Lew;Paul Segall
  • 通讯作者:
    Paul Segall
Could Kilauea’s 2020 post caldera-forming eruption have been anticipated?
基拉韦厄火山 2020 年火山口形成后的喷发是否可以预见?
Dynamic Rupture Simulations of Caldera Collapse Earthquakes: Effects of Wave Radiation, Magma Viscosity, and Evidence of Complex Nucleation at Kı̄lauea 2018
火山口塌陷地震的动态破裂模拟:波辐射、岩浆粘度的影响以及 2018 年 Kı̄lauea 复杂成核的证据
  • DOI:
    10.1029/2023jb028280
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taiyi A. Wang;Eric M Dunham;Lukas Krenz;L. Abrahams;Paul Segall;Mark R. Yoder
  • 通讯作者:
    Mark R. Yoder

Paul Segall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Segall', 18)}}的其他基金

Insights into Episodic Caldera Collapse and Magmatic Systems from the 2018 Eruption of Kilauea Volcano
从 2018 年基拉韦厄火山喷发洞察火山口火山口崩塌和岩浆系统
  • 批准号:
    2040425
  • 财政年份:
    2021
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fusing Massive Disparate Data and Fast Surrogate Models for Probabilistic Quantification of Uncertain Hazards
协作研究:融合海量不同数据和快速替代模型以对不确定危害进行概率量化
  • 批准号:
    2053414
  • 财政年份:
    2021
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Constraints on absolute magma chamber volume from geodetic measurements: Trapdoor faulting in the Galapagos
大地测量对绝对岩浆房体积的限制:加拉帕戈斯群岛的活板门断层
  • 批准号:
    1829763
  • 财政年份:
    2018
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing the frictional behavior of the Tohoku megathrust using GPS, seismicity, and physics-based models
合作研究:利用 GPS、地震活动和基于物理的模型探索东北巨型逆冲断层的摩擦行为
  • 批准号:
    1620496
  • 财政年份:
    2016
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Physics-Based Volcano Geodesy with Application to Effusive Eruptions at Mount St Helens
基于物理的火山大地测量及其在圣海伦斯火山喷发中的应用
  • 批准号:
    1358607
  • 财政年份:
    2014
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geodetic Constraints on Moment Deficit and Physics-based Earthquake Cycle Models in the Source Region of the M 9 Tohoku, Japan Earthquake
合作研究:日本东北9级地震震源区矩差的大地测量约束和基于物理的地震周期模型
  • 批准号:
    1141931
  • 财政年份:
    2012
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Modeling recent behavior of Mt. St. Helens: extrusion dynamics, deformation, and seismicity
对圣海伦斯山的近期行为进行建模:挤压动力学、变形和地震活动
  • 批准号:
    0910708
  • 财政年份:
    2009
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Dilatant Stabilization as a Mechanism for Slow Slip Events
膨胀稳定作为慢滑移事件的机制
  • 批准号:
    0838267
  • 财政年份:
    2009
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Deformation and Seismicity Accompanying Effusive Silicic Eruptions
伴随硅质喷发的变形和地震活动
  • 批准号:
    0710844
  • 财政年份:
    2007
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Utilizing GPS Measurements of Postseismic Deformation to Infer Spatial Distribution of Frictional Properties on Faults
合作研究:利用震后变形的 GPS 测量来推断断层摩擦特性的空间分布
  • 批准号:
    0635633
  • 财政年份:
    2007
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant

相似国自然基金

青藏高原仁错湖群古湖岸堤释光年代学及古水位演化历史研究
  • 批准号:
    42302212
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双层堤基管涌侵蚀界面颗粒起动输移微观水动力机制研究
  • 批准号:
    52379097
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
穿堤管道管-土-流耦合作用机理与运行监测研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
大比降河床进占戗堤局部冲刷失稳坍塌机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
琼东南盆地水道-天然堤体系砂质储层天然气水合物差异成藏控制机理
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:

相似海外基金

貝殻型キャピラリーバリア土層で被覆された堤防裏法面の粘り強さとCO2固定化の評価
贝壳状毛细管屏障土层路堤后坡的韧性及CO2固定评价
  • 批准号:
    24K07653
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
宇宙線ミュー粒子を用いた河川堤防内部の探査手法の確立と堤防決壊リスクの定量的評価
河堤内宇宙线μ子探测方法建立及堤防决堤风险定量评价
  • 批准号:
    24KJ1998
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
神経堤由来幹細胞を用いたバイオハイブリットジルコニアインプラントの開発
使用神经嵴干细胞开发生物混合氧化锆植入物
  • 批准号:
    24K13013
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
炎症は頭部神経堤の遺伝子発現を攪乱する薬物誘発性の頭蓋顔面奇形を増悪するのか?
炎症是否会加剧药物引起的颅面畸形,从而破坏颅神经嵴基因表达?
  • 批准号:
    24K13247
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
古代魚の鱗を利用したエナメル質石灰化における神経堤細胞の関与についての証明
使用古代鱼鳞证明神经嵴细胞参与牙釉质矿化
  • 批准号:
    24K10008
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了