EAGER: Toward a Network-Based Framework for Analysis and Control of Inverter-Dominated Power Grids

EAGER:建立基于网络的逆变器主导电网分析和控制框架

基本信息

  • 批准号:
    2333563
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The growing integration of renewable energy into the power grid via power electronic inverters has fundamentally changed grid dynamics, and caused emerging issues of sub-synchronous oscillations. This NSF EAGER project aims to understand how interconnected inverters collectively cause these oscillations, and how to design control strategies to mitigate them. The project will bring transformative changes to oscillation analyses and control by leveraging the structural properties of the underlying power network, which are radically different from the existing traditional methods. This will be achieved by developing a novel network-based framework for analysis and control of sub-synchronous oscillations. The intellectual merits of the project include new insights that will complement those obtained from current studies to provide a deeper understanding and a more complete picture of the sub-synchronous oscillation mechanism, as well as novel network-based control strategies that will help grid planners and operators in addressing this problem. The broader impacts of the project include contributing to the increasing adoption of renewable energy, which is essential for evolving towards a sustainable economy and society, and fostering multidisciplinary education and dissemination of results to academia and industry. The increasing penetration of inverter-based resources (IBRs) has resulted in sub-synchronous oscillation (SSO) events in electric power systems, jeopardizing grid stability and reliability. The SSO is driven by the fast and complex control dynamics of inverters. It is challenging to understand the SSO mechanism and develop mitigation solutions in a large-scale power grid with many heterogenous IBRs due to the complex interaction between these IBRs. This NSF project will design a network-based framework for SSO analysis and control. This framework will transform a large-scale power system with many heterogenous IBRs into a set of simple subsystems for interpreting SSO mechanism and developing mitigation strategies from the perspective of power network structure. This project will advance the state of fundamental knowledge on understanding the SSO mechanism and designing mitigation strategies to support the reliable integration of large-scale renewable resources in the national grid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可再生能源通过电力电子逆变器日益融入电网,从根本上改变了电网动态,并引发了次同步振荡的新问题。 NSF EAGER 项目旨在了解互连逆变器如何共同引起这些振荡,以及如何设计控制策略来减轻这些振荡。该项目将利用底层电网的结构特性,为振荡分析和控制带来革命性的变化,这与现有的传统方法截然不同。这将通过开发一种用于分析和控制次同步振荡的新颖的基于网络的框架来实现。该项目的智力优点包括新的见解,将补充从当前研究中获得的见解,以提供对次同步振荡机制的更深入的理解和更完整的了解,以及新颖的基于网络的控制策略,这将有助于电网规划者和运营商来解决这个问题。该项目更广泛的影响包括促进可再生能源的广泛采用,这对于实现可持续经济和社会至关重要,并促进多学科教育以及向学术界和工业界传播成果。基于逆变器的资源(IBR)的日益普及导致电力系统中出现次同步振荡(SSO)事件,危及电网的稳定性和可靠性。 SSO 由逆变器的快速且复杂的控制动态驱动。由于这些 IBR 之间复杂的相互作用,在具有许多异构 IBR 的大规模电网中理解 SSO 机制并开发缓解解决方案具有挑战性。该 NSF 项目将设计一个基于网络的 SSO 分析和控制框架。该框架将把具有许多异构IBR的大规模电力系统转变为一组简单的子系统,用于从电力网络结构的角度解释SSO机制并制定缓解策略。该项目将提高了解 SSO 机制和设计缓解策略的基础知识,以支持大规模可再生资源在国家电网中的可靠整合。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Di Wu其他文献

Methods for Eliminating the Complex Background of Pedestrian Images
行人图像复杂背景的消除方法
  • DOI:
    10.1007/978-3-319-63309-1_40
  • 发表时间:
    2017-08-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Di Wu;Si;You;Zhi
  • 通讯作者:
    Zhi
Data-driven Model Predictive and Reinforcement Learning-Based Control for Building Energy Management: a Survey
基于数据驱动模型预测和强化学习的建筑能源管理控制:调查
  • DOI:
    10.1109/access.2022.3156581
  • 发表时间:
    2021-06-28
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Huiliang Zhang;Sayani Seal;Di Wu;B. Boulet;F. Bouffard;G. Joós
  • 通讯作者:
    G. Joós
Preparation of a novel sulfated glycopeptide complex and inhibiting L1210 cell lines property in vitro
新型硫酸化糖肽复合物的制备及其体外抑制L1210细胞系特性
  • DOI:
    10.1016/j.carbpol.2008.12.031
  • 发表时间:
    2009-06-10
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Libin Ye;Jing;Shuai Zhou;Sheng Wang;Di Wu;Ying
  • 通讯作者:
    Ying
Distributed active disturbance rejection formation containment control for multiple autonomous underwater vehicles with prescribed performance
具有规定性能的多自主水下航行器分布式自抗扰编队遏制控制
  • DOI:
    10.1016/j.oceaneng.2022.112057
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jian Xu;Yunfei Cui;W. Xing;Fei Huang;Xue Du;Zheping Yan;Di Wu
  • 通讯作者:
    Di Wu
Boosting Based Multiple Kernel Learning and Transfer Regression for Electricity Load Forecasting
基于Boosting的多核学习和传递回归的电力负荷预测
  • DOI:
    10.1007/978-3-319-71273-4_4
  • 发表时间:
    2017-09-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Di Wu;Boyu Wang;Doina Precup;B. Boulet
  • 通讯作者:
    B. Boulet

Di Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Di Wu', 18)}}的其他基金

RII Track 4: Probabilistic Dynamic Control Stability Analysis in Power Grids with High Penetration of Renewable Resources
RII 轨道 4:可再生资源高渗透率电网的概率动态控制稳定性分析
  • 批准号:
    2033355
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

库车坳陷沿走向差异构造变形成因机制定量研究
  • 批准号:
    42372264
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
含走向非一致结构面岩体真三轴卸荷力学响应及破坏模式研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
北祁连-河西走廊盆地地壳结构沿盆山走向变化及揭示的青藏高原东北缘地壳变形方式的差异
  • 批准号:
    42274134
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
“走向共同富裕”: 中国机会不平等的指标估算、决定因素与对策研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:

相似海外基金

CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
  • 批准号:
    2338069
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Toward Personalized Prognosis and Outcomes in Primary Progressive Aphasia
原发性进行性失语症的个性化预后和结果
  • 批准号:
    10634041
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Planning: FIRE-PLAN: Community Building Toward an Immersive Forest Network to Catalyze Wildland Fire Solutions and Training
规划:FIRE-PLAN:建立沉浸式森林网络的社区,以促进荒地火灾解决方案和培训
  • 批准号:
    2341120
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
  • 批准号:
    10852318
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Professional to Plain Language Neural Translation: A Path Toward Actionable Health Information
专业到通俗语言的神经翻译:通向可行健康信息的道路
  • 批准号:
    10349319
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了