Understanding the Geospace Phenomena Connected to Localized Perturbations in Earth’s Magnetic Field
了解与地球磁场局部扰动相关的地球空间现象
基本信息
- 批准号:2331527
- 负责人:
- 金额:$ 57.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
During intervals of increased geomagnetic activity, increased currents in geospace can induce currents in the ground or in long, manmade conductors, such as power lines. These geomagnetically induced currents (GICs) can drive power outages and damage power components while also affecting pipelines and train systems. Developing the ability to predict GICs is important to protecting infrastructure and limiting the impact of geomagnetic storms on public safety and the economy. This project addresses GIC prediction by seeking to understand the connection between localized temporal changes in magnetic field measurements (dB/dt) and the magnetospheric and ionospheric phenomena causing them. This work will support the training of two graduate students that will be prepared to enter the STEM workforce with knowledge of space science, space weather, and machine learning and support the career of a woman PI leading the project. This project is jointly funded by the Magnetospheric Physics program, the Established Program to Stimulate Competitive Research (EPSCoR), and the Aeronomy program.Several studies have shown that peaks in dB/dt can be very localized, on the scales of hundreds of km. Thus, forecasting is needed at a localized level to provide power companies with actionable warnings. The current physics-based models used by the Space Weather Prediction Center lack the resolution needed to include physical phenomena at the spatial scales of the dB/dt peaks. Higher resolution models are being used for scientific studies, but are computationally expensive and take longer to run, making them more challenging to use for timely forecasting. An advantage of machine learning (ML) models is that once trained, the runtime to make predictions is significantly lower than physics based direct modeling. ML networks’ ability to model nonlinear relationships in datasets can allow us to better understand the phenomena that result in localized dB/dt through the use of model explainability techniques. The following science questions will be addressed: (1) What are the spatial characteristics of localized magnetic perturbations? (2) What magnetosphere and ionosphere phenomena correlate with localized magnetic perturbations and why? The first question will be tackled using two methods that take advantage of the NSF-funded SuperMAG database: by characterizing the Region to Specific Difference (a parameter that compares the value at one location to the average values within a defined region) and by interpolation with spherical elementary current systems, and then comparing the results. The second question will utilize explainable machine learning techniques to explore magnetosphere and ionosphere phenomena that correlate with the spatially localized perturbations, incorporating datasets from satellites (e.g., DMSP, AMPERE, TWINS, and THEMIS). The results of this work will improve our understanding of geomagnetically active intervals, magnetosphere-ionosphere coupling, and the causes of localized perturbations in the ground magnetic field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在地磁活动增加期间,地球空间中的电流增加会在地面或长的人造导体(例如电力线)中感应出电流,这些地磁感应电流 (GIC) 会导致停电并损坏电力组件,同时还会影响管道和火车。发展预测 GIC 的能力对于保护基础设施和限制地磁风暴对公共安全和经济的影响非常重要。该项目通过寻求了解局部时间之间的联系来解决 GIC 预测问题。这项工作将支持培训两名研究生,他们将具备空间科学、空间天气和机器学习知识,准备进入 STEM 队伍。并支持领导该项目的女性 PI 的职业生涯。该项目由磁层物理项目、刺激竞争性研究既定项目 (EPSCoR) 和航空学项目联合资助。多项研究表明, dB/dt 峰值可能非常局部化,在数百公里的范围内,因此,需要在局部水平上进行预测,以便为电力公司提供可操作的警报。分辨率需要包括 dB/dt 峰值空间尺度的物理现象。更高分辨率的模型正在用于科学研究,但计算成本较高且运行时间较长,这使得它们在及时预测方面更具挑战性。机器学习 (ML) 模型的优点是,一旦经过训练,进行预测的运行时间明显低于基于物理的直接建模,ML 网络对数据集中的非线性关系进行建模的能力可以让我们更好地理解导致局部 dB/ 的现象。通过使用模型可解释性技术,将解决以下科学问题:(1)局部磁扰动的空间特征是什么?(2)什么磁层和电离层现象与局部磁扰动相关?将使用两种利用 NSF 资助的 SuperMAG 数据库的方法来解决:通过表征区域到特定差异(将一个位置的值与定义区域内的平均值进行比较的参数)以及通过球面插值第二个问题将利用可解释的机器学习技术来探索与空间局部扰动相关的磁层和电离层现象,并结合来自卫星的数据集(例如 DMSP、 AMPERE、TWINS 和 THEMIS)。这项工作的结果将提高我们对地磁活动区间、磁层-电离层耦合以及地面磁场局部扰动原因的理解。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Keesee其他文献
Amy Keesee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Keesee', 18)}}的其他基金
Collaborative Research: GEM: Understanding Connections between Earth’s Magnetotail and Ionosphere through Imaging
合作研究:GEM:通过成像了解地球磁尾和电离层之间的联系
- 批准号:
2109543 - 财政年份:2021
- 资助金额:
$ 57.77万 - 项目类别:
Standard Grant
Ion Heating in the Magnetotail: Understanding Geomagnetic Storms
磁尾中的离子加热:了解地磁风暴
- 批准号:
1113478 - 财政年份:2012
- 资助金额:
$ 57.77万 - 项目类别:
Standard Grant
NSF East Asia Summer Institutes for US Graduate Students
美国研究生 NSF 东亚暑期学院
- 批准号:
0413018 - 财政年份:2004
- 资助金额:
$ 57.77万 - 项目类别:
Fellowship Award
相似国自然基金
地理流空间的理论基础与分析模型
- 批准号:42330107
- 批准年份:2023
- 资助金额:224 万元
- 项目类别:重点项目
线状地理要素选址的空间优化方法-以城市绿道规划建设为例
- 批准号:42301476
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顾及地理环境相似性的犯罪风险跨地域细粒度空间推测研究
- 批准号:42371251
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
城市地理空间细粒度交通事故风险时空特性与诱因机理挖掘研究
- 批准号:52302434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字地理视角下的女性空间与女性休闲实践研究
- 批准号:42371241
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Geospace Phenomena: Assessing Danger and Understanding Mechanisms
地球空间现象:评估危险和理解机制
- 批准号:
RGPIN-2017-04779 - 财政年份:2022
- 资助金额:
$ 57.77万 - 项目类别:
Discovery Grants Program - Individual
Geospace Phenomena: Assessing Danger and Understanding Mechanisms
地球空间现象:评估危险和理解机制
- 批准号:
RGPIN-2017-04779 - 财政年份:2022
- 资助金额:
$ 57.77万 - 项目类别:
Discovery Grants Program - Individual
Geospace Phenomena: Assessing Danger and Understanding Mechanisms
地球空间现象:评估危险和理解机制
- 批准号:
RGPIN-2017-04779 - 财政年份:2021
- 资助金额:
$ 57.77万 - 项目类别:
Discovery Grants Program - Individual
Geospace Phenomena: Assessing Danger and Understanding Mechanisms
地球空间现象:评估危险和理解机制
- 批准号:
RGPIN-2017-04779 - 财政年份:2021
- 资助金额:
$ 57.77万 - 项目类别:
Discovery Grants Program - Individual
Geospace Phenomena: Assessing Danger and Understanding Mechanisms
地球空间现象:评估危险和理解机制
- 批准号:
RGPIN-2017-04779 - 财政年份:2020
- 资助金额:
$ 57.77万 - 项目类别:
Discovery Grants Program - Individual