CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
职业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
基本信息
- 批准号:2331082
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic chemicals that have been manufactured and used in numerous consumer products and industrial applications since the 1940s. During the last two decades, increasing detection of PFAS in surface water, groundwater, soils, sludges, and biosolids has raised significant concerns about their persistence, stability, and adverse impact in the environment including toxicity to living organisms and humans. Conventional water treatment technologies cannot effectively remove and destroy PFAS due to their dilute concentration in contaminated water sources and unique chemical features, including a combination of strong C-F bonds, hydrophobic carbon tails, and hydrophilic terminal head groups. The overarching goal of this CAREER project is to lay the foundation for the development of a novel and integrated filtration/catalytic reactor system that can extract and destroy PFAS from contaminated water sources. To advance this goal, the Principal Investigator proposes to use 3D printing to explore the fabrication of adsorptive/catalytic graphene-metal nanohybrid aerogels with high surface area, tunable surface chemistry, and hierarchical and interconnected pores for fast water/mass transport to enable efficient extraction and degradation of PFAS from contaminated water sources. The successful completion of this project will benefit society through the development of new functional materials and fundamental knowledge to advance the development of an integrated filtration and catalytic system that could serve a point-of-use (POU) filter for the treatment of PFAS contaminated water. Further benefits to society will be achieved through student education and training including the mentoring of a graduate student at the University at Buffalo and four middle/school teachers from the Buffalo public schools.Graphene-based aerogels have emerged as promising water treatment platforms due to their unique structural properties including hierarchical/interconnected pores with high surface area that enable fast water/mass transport, and efficient material regeneration and reuse. The integration of photocatalytic and/or redox-active metallic nanomaterials into graphene-based aerogels have the potential to open new opportunities to design and build a new generation of integrated filtration/catalytic systems for the efficient and cost-effective treatment of PFAS contaminated water. As a first step toward this goal, the Principal Investigator (PI) of this CAREER project proposes to leverage a unique 3D printing approach developed in the PI’s laboratory to explore the fabrication of tunable, self-standing, water-stable, and multifunctional photo/redox-catalytic graphene-metal nanohybrid aerogels as safe and effective platform for PFAS treatment and degradation. The specific objectives of the research are to: (1) Develop a 3D printing approach for catalytic graphene-metal nanohybrid aerogels and characterize the aerogel properties using state-of-the-art techniques including X-ray computed tomography with nanoscale resolution; (2) Investigate the relationships between the extents of PFAS sorption and catalytic degradation, graphene aerogel size and porosity, and water chemistry including the effects of pH, ionic strength, and natural organic matter on material performance; and (3) Elucidate the mechanisms of adsorption and degradation of PFAS by the 3D printed graphene aerogels using statistical modeling and a combination of analytical tools including Fourier transformed infrared (FT-IR) spectroscopy, X-Ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy, liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS), and ion chromatography (IC). The successful completion of this project has the potential for transformative impact through the development of new adsorptive/catalytic materials and the generation of new fundamental knowledge to advance the development of integrated filtration/catalytic systems that could serve as point-of-use (POU) filters for the treatment of PFAS contaminated water. To implement the educational and training goals of this CAREER project, the PI will develop a new undergraduate/graduate course at the University at Buffalo that will focus on nanomaterial synthesis, processing, and applications to environmental remediation. In addition, the PI plans to collaborate with teachers from the Buffalo Public Schools (BPS) system to develop lesson plans to teach middle/high school students about environmental pollution and remediation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全氟烷基物质和多氟烷基物质 (PFAS) 是氟化有机化学品,自 20 世纪 40 年代以来已在众多消费品和工业应用中生产和使用。在过去的二十年中,地表水、地下水、土壤、污泥和废水中 PFAS 的检测量不断增加。生物固体的持久性、稳定性和对环境的不利影响(包括对生物体和人类的毒性)引起了人们的极大关注,因为它们的浓度较低,因此无法有效去除和破坏 PFAS。受污染的水源和独特的化学特征,包括强 C-F 键、疏水性碳尾和亲水性末端头基的组合,该 CAREER 项目的总体目标是为开发新型集成过滤/催化奠定基础。可以从受污染的水源中提取和销毁 PFAS 的反应器系统 为了推进这一目标,首席研究员建议使用 3D 打印来探索吸附/催化石墨烯金属的制造。纳米杂化气凝胶具有高表面积、可调节的表面化学性质以及分层和互连的孔隙,可实现快速水/质量传输,从而能够从受污染的水源中有效提取和降解 PFAS。该项目的成功完成将通过开发新的功能来造福社会。学生将掌握材料和基础知识,以推进集成过滤和催化系统的开发,该系统可用于处理 PFAS 污染水的使用点 (POU) 过滤器。教育和培训,包括对布法罗大学的一名研究生和布法罗公立学校的四名中学/学校教师的指导。基于石墨烯的气凝胶因其独特的结构特性(包括分层/互连的孔隙)而成为有前途的水处理平台。高表面积,可实现快速水/质量传输以及有效的材料再生和再利用将光催化和/或氧化还原活性金属纳米材料集成到石墨烯基气凝胶中,有可能为设计和建造带来新的机会。作为实现这一目标的第一步,该 CAREER 项目的首席研究员 (PI) 提议利用 2019 年开发的独特 3D 打印方法。 PI实验室致力于探索可调谐、自支撑、水稳定性和多功能光/氧化还原催化石墨烯-金属纳米杂化气凝胶的制造,作为安全有效的平台研究的具体目标是:(1) 开发催化石墨烯-金属纳米杂化气凝胶的 3D 打印方法,并使用最先进的技术(包括 X 射线计算机断层扫描)表征气凝胶的性能。 (2) 研究 PFAS 吸附程度和催化降解、石墨烯气凝胶尺寸和孔隙率以及水化学之间的关系,包括pH、离子强度和天然有机物对材料性能的影响;(3) 利用统计模型和傅里叶变换红外 (FT-IR) 等分析工具的组合,阐明 3D 打印石墨烯气凝胶吸附和降解 PFAS 的机制;光谱、X 射线光电子能谱 (XPS)、电子顺磁共振 (EPR) 光谱、液相色谱与高分辨率质谱联用(LC-HRMS) 和离子色谱 (IC) 的成功完成有可能通过开发新的吸附/催化材料和产生新的基础知识来推动集成过滤/催化的发展,从而产生变革性的影响。可以用作处理 PFAS 污染水的使用点 (POU) 过滤器的系统 为了实现该职业项目的教育和培训目标,PI 将开发一门新的本科生/研究生课程。布法罗大学将专注于纳米材料的合成、加工和环境修复应用。此外,PI 计划与布法罗公立学校 (BPS) 系统的教师合作,制定课程计划,向中/高中学生教授相关知识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nirupam Aich其他文献
Using Deep Eutectic Solvent for Conjugation of Fe 3 O 4 Nanoparticles 1 onto Graphene Oxide for Water Pollutant Removal 2 by 3
使用低共熔溶剂将 Fe 3 O 4 纳米粒子 1 缀合到氧化石墨烯上,去除水污染物 2 by 3
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Novin Mehrabi;U. Faruq;Abdul Haq;M. Toufiq;Nirupam Aich - 通讯作者:
Nirupam Aich
Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles.
氯化物和离子强度对银纳米颗粒的物理形态、溶解度和细菌毒性的影响。
- DOI:
10.1021/es403969x - 发表时间:
2014-01-07 - 期刊:
- 影响因子:11.4
- 作者:
Bryant A. Chambers;A. N. Afrooz;Sungwoo Bae;Nirupam Aich;L. Katz;Navid B. Saleh;M. Kirisits - 通讯作者:
M. Kirisits
Stormwater green infrastructures retain high concentrations of TiO2 engineered (nano)-particles.
雨水绿色基础设施保留了高浓度的二氧化钛工程(纳米)颗粒。
- DOI:
10.1016/j.jhazmat.2020.122335 - 发表时间:
2020-02-17 - 期刊:
- 影响因子:13.6
- 作者:
Mohammed Baalousha;Jingjing Wang;Mahmudun Nabi;Frédéric Loosli;Renan Valenca;S. Mohanty;Nabiul Afrooz;E. Cant;o;o;Nirupam Aich - 通讯作者:
Nirupam Aich
Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept
新兴研究者系列:用于去除水污染物的 3D 打印石墨烯生物聚合物气凝胶:概念验证
- DOI:
10.1039/d0en00953a - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Arvid Masud;Chi Zhou;Nirupam Aich - 通讯作者:
Nirupam Aich
Using Deep Eutectic Solvents for the In-Situ Synthesis of Graphene-Metal Nanohybrids and Nanocomposite Membranes for Dye Desalination
- DOI:
10.2139/ssrn.4111004 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:0
- 作者:
Novin Mehrabi;Nirupam Aich - 通讯作者:
Nirupam Aich
Nirupam Aich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nirupam Aich', 18)}}的其他基金
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
- 批准号:
2324853 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
- 批准号:
2227942 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
- 批准号:
2227942 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
事业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
- 批准号:
2145128 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
- 批准号:
2339254 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
事业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
- 批准号:
2145128 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: An Inclusive Approach to Diversity Inspired Design on Novel 3D Printed Electric Motors
职业生涯:新型 3D 打印电动机的多样性启发设计的包容性方法
- 批准号:
2045776 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10514527 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10317899 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别: