Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects

协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案

基本信息

  • 批准号:
    2331003
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Society’s growing reliance on intelligent electronic systems risks significant disruption and loss from integrated circuit failure. Mitigating this threat requires building electronic systems that have been extensively tested to ensure that they are fully functional and defect-free. Modern integrated circuits contain billions of transistors that makes a complete exhaustive test of circuit functionality impractical and infeasible. Such tests are generated in practice, by considering the impact of likely manufacturing defects such as shorts and opens at various circuit locations, and developing a set of input test patterns whose correct binary output is altered by the existence of any targeted fault, identifying a bad integrated circuit. However, it is not practical to model and target all possible malfunctions in a large circuit, especially those that employ deeply scaled technologies, low supply voltages and high clock speeds. As a consequence, some faulty circuits inevitably escape post-manufacture testing because of incomplete test coverage and cause integrated circuit failure when deployed in operation. The goal of this research is to develop better and significantly more cost-effective test methods for state-of-the-art integrated circuits that can significantly impact the affordability and reliability of future computing systems that are increasingly pervasive in day-to-day societal applications and critical for national defense. The project will also help train new students in this strategic area, consistent with recent priorities for US leadership in semiconductor manufacturing. Traditional test methods for integrated circuits generate test inputs that explicitly detect faulty behavior only at the terminals of the standard cell building blocks and the interconnections between these cells. It is now widely known that detection of defective devices can be enhanced by considering defects within the cell circuitry as well. To do this, currently, faults are injected one at a time at likely defect locations in the cell layout, followed by exhaustive circuit simulation of all possible input patterns to obtain cell level tests. The generated tests are then delivered to cells embedded in logic circuitry using circuit-level test generation algorithms. This has major drawbacks. First, it is expensive to characterize the full range of resistive defects at every possible location in large cells using exhaustive circuit simulation. In practice, only ideal shorts and opens are simulated, leading to test escapes. Second, this does not consider the significant impact of a timing delay in one cell on the delays of other interconnected cells. Third, existing test generation techniques such as cell aware test, can increase test size and application time by greater than fivefold. To address these issues, this project seeks to develop a new testing methodology that avoids exhaustive simulation, but instead uses analytical reasoning to generate tests for cell internal defects. Algorithms based on this analytic approach can generate compact tests that cover defects spanning large resistance ranges without the need for repeated simulations. Additionally, the delay impact of a single defect that affects multiple cells can also be effectively captured, minimizing the escape of timing faults.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会对智能电子系统的日益依赖可能会因集成电路故障而造成重大破坏和损失。要减轻这种威胁,需要构建经过测试的电子系统,以确保其功能齐全且无缺陷。现代集成电路包含数十亿个广泛制造的晶体管。对电路功能进行全面详尽的测试是不切实际和不可行的,这种测试是在实践中通过考虑可能的制造缺陷(例如各个电路位置的短路和开路)的影响,并开发一组输入测试模式(其正确的二进制输出)来实现的。存在然而,对大型电路中所有可能的故障进行建模和定位是不切实际的,特别是那些采用深度扩展技术、低电源电压和高时钟速度的电路。由于测试覆盖范围不完整,有故障的电路不可避免地会逃避制造后测试,并在运行时导致集成电路故障。本研究的目标是为最先进的集成电路开发更好且更具成本效益的测试方法。这可能会严重影响负担能力该项目还将帮助培训这一战略领域的新学生,这与美国在半导体制造领域的领导地位最近的优先事项一致。集成电路的方法生成仅在标准单元构建块的端子和这些单元之间的互连处明确检测故障行为的测试输入。现在众所周知,可以通过将单元电路内的缺陷考虑为来增强对有缺陷器件的检测。为了做到这一点,目前,在单元布局中可能存在缺陷的位置一次注入一个故障,然后对单元级测试的所有可能输入模式进行详尽的电路模拟,然后使用电路级测试生成算法将生成的测试传递到嵌入逻辑电路中的单元。首先,使用详尽的电路模拟来表征大型电池中每个可能位置的全部电阻缺陷的成本很高,这会导致测试逃逸。不考虑重大影响第三,现有的测试生成技术(例如单元感知测试)可以将测试规模和应用时间增加五倍以上。为了解决这些问题,该项目寻求开发一种测试方法。新的测试方法避免了详尽的模拟,而是使用分析推理来生成电池内部缺陷的测试。基于这种分析方法的算法可以生成涵盖大电阻范围的缺陷的紧凑测试,而无需重复模拟。影响多个细胞的单一缺陷该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adit Singh其他文献

Adit Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adit Singh', 18)}}的其他基金

SHF: Small: Minimizing System Level Testing of Processor SOCs
SHF:小型:最大限度地减少处理器 SOC 的系统级测试
  • 批准号:
    1910964
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Small: Targeting Hazard Activated Faults to Improve Open Defect Coverage of Scan Delay Tests
SHF:小型:针对危险激活的故障以提高扫描延迟测试的开放缺陷覆盖率
  • 批准号:
    1527049
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: TIMING VARIATION RESILIENT SIGNAL PROCESSING: HARDWARE-ASSISTED CROSS-LAYER ADAPTATION
合作研究:时序变化弹性信号处理:硬件辅助跨层自适应
  • 批准号:
    1319529
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Targeting Multi-Core Clock Performance Gains in the face of Extreme Process Variations
协作研究:面对极端的工艺变化,瞄准多核时钟性能增益
  • 批准号:
    0903449
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Silicon Calibrated Scan Based Timing Tests for Delay Defect Detection
用于延迟缺陷检测的基于硅校准扫描的时序测试
  • 批准号:
    0811454
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EHCS: Dynamic Vertically Integrated Power-Performance-Reliability Modulation in Embedded Digital Signal Processors
EHCS:嵌入式数字信号处理器中的动态垂直集成功率性能可靠性调制
  • 批准号:
    0834620
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ITR: Built-In Test of High Speed/RF Mixed Signal Electronics
ITR:高速/射频混合信号电子设备的内置测试
  • 批准号:
    0325426
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Wafer Oriented Trend Analysis for VLSI Test Opitmazation
面向晶圆的趋势分析,用于 VLSI 测试优化
  • 批准号:
    9912389
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Exploiting Defect Clustering Information in VLSI Testing
在 VLSI 测试中利用缺陷聚类信息
  • 批准号:
    9208929
  • 财政年份:
    1992
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Research Initiation: Fault Tolerance Schemes for High Performance WSI Processor Arrays
研究启动:高性能WSI处理器阵列的容错方案
  • 批准号:
    8808325
  • 财政年份:
    1988
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

推脱躺平还是如虎添翼?智能工作反馈对领导工作有效性的双面效应研究
  • 批准号:
    72302140
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
风浪成长理论约束下的SAR台风浪有效波高反演方法研究
  • 批准号:
    42306196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属多硫化物有效态电子调控与强化芬顿反应效能的界面机制研究
  • 批准号:
    52370183
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
套期会计有效性的研究:实证检验及影响机制
  • 批准号:
    72302225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
家庭贫困脆弱性识别视角下乡村脱贫衔接振兴的有效路径研究
  • 批准号:
    72304160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328826
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328830
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310262
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Dual-track Role-based Learning for Cybersecurity Analysts and Engineers for Effective Defense Operation with Data Analytics
协作研究:SaTC:EDU:网络安全分析师和工程师基于角色的双轨学习,通过数据分析实现有效的防御操作
  • 批准号:
    2228002
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
  • 批准号:
    10735407
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了